

Amersham Typhoon scanner

Instrument Handbook

操作ガイド

Ver. 161209_2

このたびは、Amersham Typhoon scanner システムをお買い求めいただきまして誠にありがとうございます。 本書はシステム全体の使い方、機能を簡略化して説明しています。詳細な使い方は、英文マニュアルを ご覧下さい。

目次

1.	A	.mersham Typhoon scanner 装置概要	4
2.	А	mersham Typhoon scanner システム構成とパーツ名称	5
3.	А	mersham Typhoon scanner 本体の起動と終了方法	10
	3.1	起動方法	10
	3.2	終了方法	10
4.	S	canner Control Software の起動と終了	12
	4.1	起動方法	12
	4.2	終了方法	12
	4.3	Control Software メインウィンドウの説明	13
5.	F	luorescence モード:蛍光サンプルのスキャン方法	15
	5.1	スキャン条件設定	15
	5.2	ステージへのサンプルセッティングとスキャナー本体へのセット	18
	5.3	PMT 電圧値の最適化方法とスキャンの実行	22
	5.4	スキャンの完了と停止	26
	5.5	スキャン終了後にできること	26
6.	F	luorescence モード:2-D DIGE サンプルのスキャン方法	28
	6.1	スキャン条件設定	28
	6.2	ステージへのサンプルセッティングとスキャナー本体へのセット	30
	6.3	PMT 電圧値の最適化方法とスキャンの実行	32
	6.4	スキャンの完了、停止	35
	6.5	スキャン終了後にできること	37
7.	Р	hosphor モード:RI 標識サンプル(ストレージフォスファスクリーン/イメージングプレート)	のスキャ
ン	3	8	
	7.1	スキャン条件設定	38
	7.2	ステージへのサンプルセッティングとスキャナー本体へのセット	40
	7.3	スキャンの実行と完了、停止	41
	7.4	スキャン終了後にできること	42
	7.5	ストレージフォスファスクリーン/イメージングプレート の露光手順と注意事項	43
8.	D	Densitometry モード: 可視サンプルのスキャン方法	46
	8.1	スキャン条件設定	46
	8.2	ステージへのサンプルセッティングとスキャナー本体へのセット	48
	8.3	スキャンの実行と完了、停止	49
	8.4	スキャン終了後にできること	50

9.	試	薬ごとの推奨光源とフィルター一覧	51
10.		Amersham Eraser ストレージフォスファスクリーン/イメージングプレート消去機	54
1	0.1	Amersham Eraser 装置概要	54
1	0.2	Amersham Eraser システム構成とパーツ名称	54
1	0.3	Amersham Eraser の起動	56
1	0.4	ストレージフォスファスクリーンの消去	57
1	0.5	消去の終了	57

1. Amersham Typhoon scanner 装置概要

Amersham Typhoon scanner は異なる波長を持つ複数のレーザーと多種類のフィルターとの組み合わせ でさまざまな蛍光色素で染色されたゲルやメンブレン等をスキャンすることが可能なスキャナータイプ画像 解析装置です。さらに、放射線エネルギーセンサーとして開発されたストレージフォスファスクリーン/イメー ジングプレート や CBB・銀染色などの可視サンプル(デジタイズ)をスキャンすることが可能です。

<主な特長>

- Red/ Green/ Blue + NIR(近赤外)蛍光、可視染色ゲルの検出が可能
- RI 検出フォスファスクリーン(イメージングプレート)にも対応
- **大領域のスキャンエリア(46×40 cm)*** Phosphor Imaging (RI 検出)の最大サイズは 35)の最大サイズ

<対応可能なアプリケーション例>

・蛍光染色された 1-D ゲルのスキャン

- ・蛍光染色されたラージゲルによる二次元電気泳動、2-D DIGE
- ・蛍光ウェスタンブロッティング (ECL Plex)
- ・化学蛍光ウェスタンブロッティング
- ・RI 検出 (Phosphor Screen/イメージングプレート)
- ・可視染色(CBB、銀染色)ゲルのスキャン

・組織のイメージング

・マイクロアレイ (解像度 10 μm) など

2. Amersham Typhoon scanner システム構成とパーツ名称

パート	機能
1	Amersham Typhoon scanner
2	Amersham Eraser (オプション)
3	Amersham Cabinet (オプション)

システム構成

Amersham Typhoon scanner には	3 種類のシステムがあります。
-----------------------------	-----------------

システム名	Amersham Typhoon	Amersham Typhoon Amersham Typhoo		
	scanner IP	scanner RGB	scanner 5	
検出モード	Phosphor Imaging	Phosphor Imaging	Phosphor Imaging	
	(RI)	(RI)	(RI)	
		Fluorescence(蛍光)	Fluorescence(蛍光、	
		Densitometry(可視)	NIR 蛍光)	
			Densitometry(可視)	
光源	635 nm LD	488 nm LD	488 nm LD	
		532 nm SHG	532 nm SHG	
		635 nm LD	635 nm LD	
			685 nm LD	
			785 nm LD	
フィルター	IP 390BP	IP 390BP	IP 390BP	
		Cy2 525BP20	Cy2 525BP20	
		Cy3 570BP20	Cy3 570BP20	
		Cy5 670BP30	Cy5 670BP30	
		――オプション――	IRshort 720BP20	
		LPB515	IRlong 825BP30	
		LPG550	ーーーオプション―ー	
		LPR660	LPB515	
			LPG550	
			LPR660	
検出系	バイアルカリ PMT	バイアルカリ PMT	バイアルカリ PMT	
		マルチアルカリ PMT	マルチアルカリ PMT	
ステージ	IP stage	IP stage	IP stage	
		Fluor stage	Fluor stage	
		Multi stage	Multi stage	
含まれる	1-8, 14, 15	1-17	1-17	
パーツ番号				

パーツ名称

① 機器パネル	⑦ フィルターモジュール	I Membrane weight
② スキャナードア	⑧ フィルタードア	④ IP stage
③ ドアハンドル	9 Fluor stage	15 吸引ロッド
④ 装置カバー	1) Digitization plate	16 Multi stage
⑤ 電源ケーブルコネクター	(1) Sample spacer	⑰ マイクロタイタープレートホル
		ダー
⑥ 電源スイッチ	Digitization/OD spacers	18 Glass slide holder
		(オプション)
	· · · · · · · · · · · · · · · · · · ·	

 ・19 ガラスプレートガイド(オプション/イメージ図なし)
 ・1 Multi stageで大型ガラスセット(最大33×42
cm)を使用する場合、元の可動式ガイドプレートの代わりに使用します。

11

パート	色	機能/ステータス
1	白	On/Off ボタン
2	白色 LED ランプ	● 点灯時:機器を使用可能
		● 点滅時:機器が起動中またはシャットダウン中

3	青色 LED ランプ	● 機器がスキャン中、または
		 フィルターがスキャナー内部に移動中(フィルター取り付け後)
4	赤色 LED ランプ	エラー
	*	

3. Amersham Typhoon scanner 本体の起動と終了方法

3.1 起動方法

- 1. スキャナーにステージがないことを確認後、ドアを確実に閉めます。
- 2. 機器の右側にある電源スイッチを " | " 位置に入れます。
- 3. 機器フロントパネルの On/Off ボタンを押します。

白色 LED ランプが点滅し、自己診断が始まります。

おおよそ 5 分程度で機器のビープ音が 1 回鳴ります。 白色 LED ランプが点灯すると操作ができる状態です。

3.2 終了方法

- 1. スキャナーからすべてのステージを取り外します。
- 2. 機器フロントパネルの On/Off ボタンを押します。

白色 LED ランプが点滅してから消灯します。

3. 装置右側の電源スイッチを押して、O 位置に入れます。

4. 装置の電源がオフになります。

4. Scanner Control Software の起動と終了

4.1 起動方法

- 1. Amersham Typhoon scanner 本体、および周辺機器の電源を入れます。
- 2. コンピューターの電源を入れます。
- 3. Amersham Typhoon scanner 本体のウォーミングアップが完了していること(機器パネルで白色 LED ランプのみが点灯状態)を確認の上、Scanner Control Software を起動します。

アイコンをクリック

4. Scanner Control Software の起動画面が表示された後にメインウィンドウが表示されます。

Annual Speed Rener	American System State	
Amersham Typhoon	Amersham Typhoon	00
	Neoreganice Phosphorimaging Densitometry	See Stage
	Number Numer Numer Numer <td></td>	
Software ensure 1607 Fremane ensure 167	mapi time (Clipton mages	Total Ne star.) 428,56 MB Scantsmin 23 min
TRANSPORT ZINI Sensitivene BOXDON C ZDI Senet Thom company. All Ryte sensed	Finners WW9900 Neess Financial 🗶 pill ing M Kate	Person Sont
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Lange to Older the Control of Older to Older the Older to Older to Older the Older to Ol	Data Ready

4.2 終了方法

1. ウィンドウ右上の[×]ボタンをクリックして終了してください。

4.3 Control Software メインウィンドウの説明

Amersham Typhoon Scanner Amersham Typhoon			9	?
Flueresceince Phosphor Imaging Densitometry		7 View	Image	8
Method Cy3 custom method-F 🗸 Scan Speed Normal 🗸 Pivel Size 100 µm 🗸	3)	a Titer plates		~
1 (0 (y)) PMT (0) Auto PMT	16			16
Add Scan	14 15 12 G	н	I	14 13 12 11
	10 9 D	E	F	10 9 8
	6 5 4	в	C	6 5 4
	3 2 1			3 2 1
	ABCDI	EFGHIJKL	M N O P G) R
Image folder CATyphoon images	Browse	Total I Sca	file size : an time :	44.20 M 18 m
File name (YYYYMMDD-hhmmss Format(s) 🗹 .gel 🖌 .mg 🗌 tif	Note wer			
Save Method Delete Method		Pre Scan		Scan
Lawer Filter PMT 1: ○ 488 nm 4: ○ 685 nm 1: ● IP 4: ● 0,5 7: ● Ilishort Bi-alkai 2: ○ 532 nm 5: ○ 785 nm 1: ● IP 4: ● 0,2 5: ● 0,2LP 8: ■ IRleng Multi-al 3: ● 0,32 nm 5: ● 0,32 5: ● 0,340 8: ■ IRleng Multi-al	Sta Kali Re	tus Pady		

1. スキャンモードタブ

Fluorescence: 蛍光サンプルスキャン時に使用 Phosphor Imaging: フォスファースクリーン(RI サンプル)スキャン時に使用 Densitometry: 可視サンプルスキャン時に使用 選択したスキャンモードに応じて、②スキャン設定 に異なるオプションが表示されます。

2. スキャン設定

スキャンモードに応じて、異なるスキャン設定が表示されます。すべてのスキャン設定は Method に保存されます。いくつかのプログラム済み Method があり、実験の開始時にいずれかを選択できます。 いずれかのパラメーター設定を変更して Method を変更すると、新しい Method を新規の名前で保存できます。

- ステージ/Area 設定 ステージ/Area では、スキャンする領域を定義します。
- ・画像ファイル設定
 ・画像ファイル設定
 では、画像ファイルの保存場所、ファイル名、ファイル形式等の設定を定義でき
 ます。また、ファイルサイズとスキャン時間が表示されます。

5. Method とスキャン

Save Method: Method を保存する Input method name ダイアログボックスを開きます。 Delete Method: Method を削除します。 Pre Scan: プリスキャンを開始します。 Scan: スキャンを開始します。

- 6. 機器ステータス レーザー、フィルター、光電子増倍管(PMT)のステータスが表示されます。
- View Image
 プリスキャンまたはスキャン後に、View Image モードで画像を表示します。
- 8. General settings レーザーとフィルターの組み合わせ、自動補正を設定し、サービスログファイルを生成します。
- 9. **⑦** ヘルプボタン

① Amersham Typhoon scanner と Scanner Control Software の情報

5. Fluorescence モード: 蛍光サンプルのスキャン方法

5.1 スキャン条件設定

1. Control Software メインウィンドウの Fluorescence タブを選択します。

	Amersham Typhoon					00
1	Fluorescence Phosphor Imaging Densitometry		$\widehat{\mathcal{O}}$		View Image	¢
2	Method V Scan Speed Normal V Pixel Size 100 µm V	1	Stage/Are	a Fluor		
	1 ○ ● [Cy2]	16 15 14				16 15 14
	C ● [Cy3]	13 12 11 10				13 12 11 10
6	○● [Cy5] ✓ PMT (V) Auto	9 8 7 6 5				9 8 7 6 5
	○ ● [IRshort] ✓ × PMT (V) 400 □ Auto PMT	4 3 2 1	•			4 3 2 1
3	O Add Scan		A B C D E	FGHI	JKLMNOP	QR
8	Image folder C(Typhoon images	√В	rowse		Total file size : Scan time :	17.17 MB 33 min
9	File name WYYMMDD-hhmmss	Not	te	_		
	Save Method Delete Method			P	re Scan	Scan
	Laser Filter PMT 1: ○ 488 nm 4: ○ 685 nm 1: ● IP 4: ● Cy5 7: ● IRshort Bi-alk	kali	Stat	tus		
	2: ○ 532 nm 5: ○ 785 nm 2: ● Cy2 5: ● Cy2(LP) 8: ● IRlong Multi- 3: ● C43 6: ● Cy2(LP) 8: ● IRlong Multi-	i-alkali	Re	ady		

2. Method の選択

プログラム済み Method を選択します。各メソットの光源とフィルターの情報は、General settings で確認できます。色素の推奨光源とフィルターの組み合わせ例は、8 章を参照してください。

			標準組み合わせ				
Method		v		Laser	Filter		
1	C	Default	Cy2488 nm	525BP20)		
	PN	[Cy3 method-F]	Cy3532 nm	570BP20)		
2	C	[Cy5 method-F]	Cy5635 nm	670BP30)		
	٩٩	[IRshort method-F] [IRlong method-F]	IR short	685 nm	720BP20		
3	C PN	[DIGE 3 dyes method-FD] [Dark scan method-F]	IR long	785 nm	825BP30		

3. Add Scan の選択(必要に応じて)

● Add Scan 連続して異なるメソットを実施したい場合に、メソットを追加できます。最大5つ

のメソットを続けてスキャンできます。

4. Scan Speed の設定

通常は Normal を選択します。

バックグラウンドノイズを低減したい場合に、Slowを使用しますが、スキャン時間がかかります。

5. Pixel size の設定

サンプルサイズや対象によって異なります。ラダー状の電気泳動パターンならば、100-200 µm 程度、 ミニゲル(10×10 cm 程度)の2次元電気泳動パターンならば 50-100 µm 程度が目安です。

	200	100	50	25	10	μm
画質	低い		\Leftrightarrow		高い	
スキャン時間	短い		\Leftrightarrow		長い	
画像容量	小さい		\Leftrightarrow		大きい	

6. Sensitivity の選択

光電子増倍管(PMT)に加える電圧を選択します。

・ ✓ Auto PMT Pre Scan に基づいて PMT 電圧を自動で設定します。チェックを入れて Scan ボ タンを押すと、自動的に Pre Scan およびデータ画像取得のための Scan が実施されます。

・PMT(V) 0 Auto PMTのチェックをはずすと、数値の入力が可能となります。数値を入力 して PMT 電圧を設定します。PMT 電圧値が高いほど感度が上がります。ただし PMT の電圧が高 すぎると、画像が飽和してバックグラウンドが高くなります。このため、PMT 電圧をサンプルタイプごとに 最適化することをお奨めします。最適化の方法は、"5-3 PMT 電圧値の最適化方法"を参照し てください。

	250V		1000V
数値	小	\Leftrightarrow	大
感度	低	\Leftrightarrow	高

7. スキャンエリアの設定

下図① Stage/Area のタブでは、タイタープレートなど規定の枠設定を選択します。 規定枠以外の領域は、サンプルステージの縦横の数字とアルファベットを目安に、下図②上でマウ スをクリック/ドラッグすることで任意エリアを設定します。

複数のスキャンエリアを作成できます。下図はAとB、二ヶ所のエリアが設定されている例です。

スキャン領域のサイズを変更する : 青いボックスの縁をク リックアンドドラッグします。

新しいスキャン領域を追加する : クリックアンドドラッグして、 新しいスキャン領域を作成します。

スキャン領域の位置を変更する : 青いボックスをクリックア ンドドラッグします。

スキャン領域を削除する: スキャン領域を選択し、コンピ ューターキーボードの Delete キーを押します。

- 8. Image folder フィールドで、画像ファイルを保存するフォルダを選択
- 9. File name フィールドに画像ファイルの名前を入力
- 10. 画像ファイル形式を選択

.gel、 .img、 .tif 形式から選択します。プレゼンテーション用に.tif 形式が必要な場合は、.gel、 .img 形式と同時に選択します。.tif 形式のみを選択することはできません。

.gel 形式

付属の ImageQuant TL 解析ソフトウェアで解析する場合に選択します。100,000 階調で表示されます。定量解析に適するデータ形式です。スキャン条件の情報も保存され、ImageQuant TL ソフトウェアで情報を確認することができます。

.img 形式

富士フイルム社の Image Gauge / Multi Gauge 解析ソフトウェア(販売終了)で解析する場合 に選択します。65,536 階調で表示されます。定量解析に適するデータ形式です。スキャン条件の 情報も保存され、Image Gauge / Multi Gauge 解析ソフトウェアで情報を確認することができま す。.img ファイル生成と同時に同じファイル名称で拡張子.infのファイルが生成されます。2つのファ イルはセットで取り扱う必要があります。

.tif 形式

プレゼンテーションには、 .tif 形式を使用します。16bit Gray Scale で保存されますが、画像ファイル

中の最大数値が65,535になるように数値変換されるため、定量的な分析には推奨されません。

5.2 **ステージへのサンプルセッティングとスキャナー本体へのセット**

ゲルまたはメンブレンサンプルの場合

 Fluor stage にゲルまたはメンブレンを置きます。メンブレンはスキャン面を下向きにセットします。縦メ モリ 1、横メモリ A よりも内側にセットします。(Sample spacer を置くとセット位置がわかりやすくなり ます。)

- 2. ゲルまたはメンブレンとステージとの間の気泡を取り除きます。
- 3. サンプルがメンブレンの場合、Membrane weight をメンブレンの上に置いて、スキャン中の振動によ るずれを減らします。

4. スキャナーのドアを開け、Fluor stage を枠の印字面が上になるように本体のステージホルダー上にセットし、奥まで(つきあたるまで)押し込んでください。

5. スキャナーのドアを閉めます。

ガラス付きゲルの場合

ガラス付きゲルを Multi stage にセットします。

1. Multi stage を準備します。

7. 可動式ガイドプレート

- 8. ロックネジ (可動式ガイドプレートを保持)
- 9. 可動式ガイドプレート

ヒント:低蛍光ガラスプレートの使用をおすすめします。ゲルはガラスプレートにはさまれた状態でス キャンでき、多くの利点があります。

- 操作が容易で、ゲルを損傷するリスクが低くなります。
- ブロモフェノールブルー試薬のフロントがゲル外へ泳動しきってしまう前に一旦スキャンを行うことが可能で、他の方法では失われてしまう可能性のある低分子量タンパク質のイメージを得ることができます。スキャン後、ゲルを電気泳動ユニットに戻し、泳動を完了させることができます。
 同様に、泳動を延長し複数のイメージを得ることによって、高分子量タンパク質を完全に分離させることが可能です。

ヒント:パウダーの付いていない手袋を着用してください。実験用手袋に使用されているパウダーは 蛍光を発し、光を分散させてイメージの質に影響を与える可能性があります。

- 2. Multi stage とガラスホルダーが清潔であることを確認します。
- 3. ゲルをはさんでいるガラスプレートが清潔で、乾燥し、ホコリが付着していないことを確認します。
- 4. ガラス付きゲル(1 枚または2 枚)を手前から入れます。5 mm 厚のガラスの場合は深い溝に合わせ、3 mm 厚ガラスの場合は浅い溝に合わせます。

5. 可動式ガイドプレートをガラス端に合わせ(奥から手前にずらし)ガラスプレートをはさみます。

- 6. ガイドプレート位置ロックネジを回して、可動ステージをロックします。
- 7. 手前2つ、奥2つ計4つのスプリングロックでガラスを固定します(スプリングロックを倒し、ネジを時 計周りに回して固定します)。

8. スキャナーのドアを開け、Multi stage を枠の印字面が上になるように本体のステージホルダー上にセットし、奥まで(つきあたるまで)押し込んでください。

9. スキャナーのドアを閉めます。

マイクロタイタープレートの場合

1. Multi stage の可動式ガイドプレートのマイクロタイタープレートホルダー用の溝に合わせ、マイクロタイ タープレートホルダーを置きます。

- 2. ガイドプレート位置ロックネジを回して、可動ステージをロックします。
- 3. 手前 2 つ、奥 2 つ計 4 つのスプリングロックでマイクロタイタープレートホルダーを固定します (スプリ ングロックを倒し、ネジを時計周りに回して固定します)。
- 4. マイクロタイタープレートをマイクロタイタープレートホルダーに置きます。
- 5. スキャナーのドアを開け、Multi stage を枠の印字面が上になるように本体のステージホルダー上にセットし、奥まで(つきあたるまで)押し込んでください。
- 6. スキャナーのドアを閉めます。

5.3 PMT 電圧値の最適化方法とスキャンの実行

スキャンの種類

Pre-Scan

解像度 1000 種類、短時間でのスキャン。条件設定した PMT 電圧値で、目的のサンプルが適切なシ グナル強度(弱すぎず、振り切れず)で検出されるかを確認する時に使用します。

Scan

条件設定した解像度でのスキャン。最終的な解析用データとして使用します。

Auto PMT 設定による PMT 電圧値最適化

この方法では、Scan ボタンを押すと自動的に Pre Scan を実施、最適な PMT 電圧値を算出し、算出された PMT 電圧値を使って、自動的に Scan が実行されます。

- 1. スキャン条件設定 Sensitivity の設定時に Auto PMT にチェックを入れます。
- 2. Scan ボタンをクリックします。

画像が View Image ウィンドウに表示されます。スキャンが完了すると、Image folder フィールドで選択したフォルダに画像ファイルが自動で保存されます。

Semi-auto PMT 設定(画像の任意範囲にフォーカスした PMT 電圧値最適化)

この方法では、Pre Scan の画像を見ながら、自分の興味のある範囲にフォーカスした最適な PMT 電圧 値を算出することができます。

- 1. **Pre Scan** ボタンをクリックします。
- 2. Pre Scan イメージが View Window に表示されます。

以下イメージ中の番号は説明文の番号と一致していますので、参照してください。

- 3. PMT 電圧値を設定するスキャン番号をクリックします (この例では Scan3 が選択されている)。
- 4. Adjust PMT パートで **Pre Scan** タブを選択します。
- 5. Selected にチェックを入れます。
- 6. Pre Scan 画像中の興味にある範囲をクリックバラッグで選択します。
- 7. 選択した範囲のシグナル強度が振り切れない PMT 電圧値が算出され、Calculated PMT に表示されます。
- 8. Use PMT ボタンを押すと自動計算された PMT 電圧値が、説明③のエリアに入力されます。
- 9. すべてのスキャン番号で、3-8の操作を繰り返し、PMT 電圧値を設定します。
- 10. Scan ボタンをクリックします。

プレビュー画像が View Image ウィンドウに表示されます。スキャンが完了すると、Image folder フィールド で選択したフォルダに画像ファイルが自動で保存されます。

シミュレーション機能を利用した PMT 電圧値最適化

この方法では、Pre Scan 画像を元に、PMT 電圧値を変えてスキャンした場合のシミュレーション画像を表示できます。自分の好みの画像が得られる PMT 電圧値を設定することができます。

- 1. Pre Scan ボタンをクリックします。
- 2. Pre Scan イメージが View Window に表示されます。

以下イメージ中の番号は説明文の番号と一致していますので、参照してください。

- 3. PMT 電圧値を設定するスキャン番号をクリックします(この例では Scan3 が選択されている)。
- 4. Adjust PMT で Estimated をクリックして選択します。
- Whole area か Selected を選択します。
 Whole area を選択すると Max intensity に表示される数値は、画像全体に対しての値になり、
 Selected を選択すると、Pre Scan 画像中の興味にある範囲をクリック/ドラッグで選択でき、Max intensity に表示される数値は、その範囲内での値になります。
- PMT ruler を左右に動かすと、その PMT に設定した場合のイメージが表示されます。
 ピンク色に表示される部分はシグナル値が振り切れている(飽和している)ことを示しています。
- 7. 自分の好みのシミュレーション画像になったところで、 Use PMT ボタンを押すとそのときの PMT 電圧 値が、説明③のエリアに入力されます。

8. すべてのスキャン番号で、3-8の操作を繰り返し、PMT 電圧値を設定します。

9. Scan ボタンをクリックします。

プレビュー画像が View Image ウィンドウに表示されます。

5.4 スキャンの完了と停止

スキャンが完了すると、Image folder フィールドで選択したフォルダに画像ファイルが自動で保存されます。 スキャンを停止するには、Stop ボタンをクリックします。

画像は保存されますが、未スキャンの領域はデータ値0で保存されます。停止した位置からスキャンを再 開することはできません。

スキャン終了後にできること 5.5

Max intensity の確認、コントラスト調整・画像反転・イメージの.jpg 形式保存などができます。

保存ファイルについて

スキャン終了後は、選択したフォルダに 5.1 のステップ 10 で選択したファイル形式 (.gel、.tif、.img)のファイルが保存されます。

Add Scan で連続してスキャンし、.gel ファイルで保存すると、「Name」.ds ファイルと、「Name」.dir

という新しいフォルダが作成されます。この新しいフォルダ内には、「Name」.ds ファイルと複数の 「Name Method」.gel ファイルがあります。

「Name」.ds ファイルはスキャン済みのイメージを ImageQuant TL で重ねることができ、個々のスキャンチャネル出力である gel ファイルは、個別のファイルとして閲覧できます。

imgファイル生成と同時に同じファイル名称で拡張子.infのファイルが生成されます。2つのファイルは セットで取り扱う必要があります。

Add Scan で連続してスキャンし、.img ファイルで保存すると、「Name」.set ファイルと、「Name」という新しいフォルダが作成されます。この新しいフォルダ内には、「Name」.set ファイルと複数の「Name Method」.img ファイルおよび「Name Method」.inf ファイルがあります。

「Name」.set ファイルはスキャン済みのイメージを富士フイルム社の Image Gauge / Mult iGauge で 重ねることができ、個々のスキャンチャネル出力である img ファイルは、個別のファイルとして閲覧で きます。

なお、「Name」.set ファイルは ImageQuant TL では開くことができません。 個々のスキャンチャネル出 力である img ファイルは、個別のファイルとして閲覧できます。

tif ファイルは個別のファイルとしての保存のみです。

6. Fluorescence モード: 2-D DIGE サンプルのスキャン方法

6.1 スキャン条件設定

1. Control Software メインウィンドウの Fluorescence タブを選択します。

	Amersham Typhoon	00
1	Fluorescence Phosphor Imaging Densitometry View Image	\$
2 3 4	6 Area ← A → Scan Speed Normal → Pixel Size 100 µm → 8	× 16 15 14 13
7	1 • [Cy2] • Standard Annotation: × * <td>12 11 10 9 8 7 6 5 5 4 3 2 2 1 P Q R</td>	12 11 10 9 8 7 6 5 5 4 3 2 2 1 P Q R
1	PMT (V) Auto PMT File Name: YWYMMDD-hhmmss-A (Cy5) Image folder CATyphoon images Image folder Total file size : Scan time : Format(s) .gel	70.51 MB 63 min
	Save Method Delete Method Pre Scan Laser Filter Filter PMT Status 1: 0 488 nm 4: 0 685 nm 2: 0 7: 0 IRshort Bi-alkali Ready 3: 0 635 nm 3: 0 Cy3 6: 0 Cy3(LP) 8: 0 IRlong Multi-alkali Ready	Scan

2. Method の選択

DIGE 3 dyes method を、プルダウンから選択します。 Cy2, 3, 5 の 3 種類のスキャン条件が表示されますが、2 dyes 泳動の場合は、スキャン条件右 上の小さな **x** 印を押すことで不要な条件を削除できます。

3. Scan Speed の設定

Normal を選択します。

4. Pixel size の設定

通常は 100 µm、ミニゲル (10x10 cm 程度) 使用時は 50 µm を選択します。

	200	100	50	25	10	μm
画質	低い		\Leftrightarrow		高い	
スキャン時間	短い		\Leftrightarrow		長い	
画像容量	小さい		\Leftrightarrow		大きい	

5. スキャンエリアの設定

DIGE 3 dyes method では下図①Stage/Area のタブで DIGE Ettan DALT が選択されています。 DALT 以外の領域設定は、サンプルステージの縦横の数字とアルファベットを目安に、下図②上でマ ウスをクリック/ドラッグすることで任意エリアを設定します。

複数のスキャンエリアを作成できます。下図はAとB、二ヶ所のエリアが設定されている例です。

スキャン領域のサイズを変更する: 青いボックスの縁をク リックアンドドラッグします。

新しいスキャン領域を追加する: クリックアンドドラッグして、新しいスキャン領域を作成します。

スキャン領域の位置を変更する: 青いボックスをクリック アンドドラッグします。

スキャン領域を削除する: スキャン領域を選択し、コンピ ユーターキーボードの Delete キーを押します。

6. Area の名前設定

Area ← A → 左右矢印でスキャンエリアを切り替え、各エリア(ゲル A とゲル B)の

Name を入力します。 Note 部分には任意コメントを入力できます。

7. Sensitivity の選択

光電子増倍管(PMT)に加える電圧を選択します。

・ ✓ Auto PMT Pre Scan に基づいて PMT 電圧を自動で設定します。チェックを入れて Scan ボ タンを押すと、自動的に Pre Scan およびデータ画像取得のための Scan が実施されます。

・PMT(V) 0 Auto PMT のチェックをはずすと、数値の入力が可能となります。数値を入力 して PMT 電圧を設定します。PMT 電圧値が高いほど感度が上がります。ただし PMT の電圧が高 すぎると、画像が飽和してバックグラウンドが高くなります。このため、PMT 電圧をサンプルタイプごとに 最適化することをお奨めします。最適化の方法は、"6-3 PMT 電圧値の最適化方法"を参照してく ださい。

	250V		1000V
数値	小	\Leftrightarrow	大
感度	低	\Leftrightarrow	高

- 内部標準サンプルが泳動されているスキャン条件には Standard にチェックを入れます。 (この 例では Cy2 が内部標準サンプル)
- 9. Annotation にゲル情報を入力

「サンプル名」、「Control」、または「Treated」のなどの用語を使用します。Time1_Dose2 など実験 条件などを示す用語も使用可能です。

10. File Name でイメージファイル名を確認

スキャン後のゲルイメージには、以下のように名前が付きます。修正したい場合は、この段階で修正 します。

- ·名称の前半部分は、「Name」に入力した情報です。(例:Gel01)
- ・名称の中央部分は、「Standard」または「Annotation」に入力した情報です。(例: Time1_Dose2)
- ・名称の後半部分は、使用される標識試薬「Method」の種類を示しています。 (例: Cy2)
- 11. Image folder フィールドで、画像ファイルを保存するフォルダを選択 保存できるファイル形式は gel ファイルのみです。

6.2 ステージへのサンプルセッティングとスキャナー本体へのセット

- ガラス付きゲルを Multi stage にセットします。
- 1. Multi stage を準備します。

- 1. ガイドプレート位置ロックネジ
- 2. マイクロタイタープレートホルダー用の溝
- 3. DIGE ゲルガラスカセット用の溝
- 4. スプリングロック固定ネジ

- 5. スプリングロック (ガラスカセットまたはマイクロプレートホルダーを保持)
- マイクロタイタープレートホルダーとガラスカセットを配置するための、高さ調整用の溝 (3 mm と 5 mm)
- 7. 可動式ガイドプレート
- 8. ロックネジ (可動式ガイドプレートを保持)
- 9. 可動式ガイドプレート

ヒント:低蛍光ガラスプレートの使用をおすすめします。ゲルはガラスプレートにはさまれた状態でス キャンでき、多くの利点があります。

- 操作が容易で、ゲルを損傷するリスクが低くなります。
- ブロモフェノールブルー試薬のフロントがゲル外へ泳動しきってしまう前に一旦スキャンを行うことが可能で、他の方法では失われてしまう可能性のある低分子量タンパク質のイメージを得ることができます。スキャン後、ゲルを電気泳動ユニットに戻し、泳動を完了させることができます。
 同様に、泳動を延長し複数のイメージを得ることによって、高分子量タンパク質を完全に分離させることが可能です。

ヒント:パウダーの付いていない手袋を着用してください。実験用手袋に使用されているパウダーは 蛍光を発し、光を分散させてイメージの質に影響を与える可能性があります。

- 2. Multi stage とガラスホルダーが清潔であることを確認します。
- 3. ゲルをはさんでいるガラスプレートが清潔で、乾燥し、ホコリが付着していないことを確認します。
- 4. ガラス付きゲル(1 枚または2 枚)を手前から入れます。5 mm 厚のガラスの場合は深い溝に合わせ、3 mm 厚ガラスの場合は浅い溝に合わせます。

5. 可動式ガイドプレートをガラス端に合わせ(奥から手前にずらし)ガラスプレートをはさみます。

- 6. ガイドプレート位置ロックネジを回して、可動ステージをロックします。
- 手前 2 つ、奥 2 つ 計 4 つのスプリングロックでガラスを固定します(スプリングロックを倒し、ネジを時計周りに回して固定します)。
- 8. スキャナーのドアを開け、Multi stage を枠の印字面が上になるように本体のステージホルダー上にセットし、奥まで(つきあたるまで)押し込んでください。

9. スキャナーのドアを閉めます。

6.3 PMT 電圧値の最適化方法とスキャンの実行

スキャンの種類

Pre-Scan

解像度 1000 μm、短時間でのスキャン。条件設定した PMT 電圧値で、目的のサンプルが適切なシグナ ル強度(弱すぎず、振り切れず)で検出されるかを確認する時に使用します。

Scan

条件設定した解像度でのスキャン。最終的な解析用データとして使用します。

Auto PMT 設定による PMT 電圧値最適化

この方法では、Scan ボタンを押すと自動的に Pre Scan を実施、最適な PMT 電圧値を算出し、算出された PMT 電圧値を使って、自動的に Scan が実行されます。

1. スキャン条件設定 Sensitivity の設定時に Auto PMT にチェックを入れます。

2. Scan ボタンをクリックします。

プレビュー画像が View Image ウィンドウに表示されます。スキャンが完了すると、Image folder フィールド で選択したフォルダに画像ファイルが自動で保存されます。

Semi-auto PMT 設定(画像の任意範囲にフォーカスした PMT 電圧値最適化)

この方法では、Pre Scan の画像を見ながら、自分の興味のある範囲にフォーカスした最適な PMT 電圧 値を算出することができます。

- 1. **Pre Scan** ボタンをクリックします。
- 2. Pre Scan イメージが View Window に表示されます。

イメージ中の番号は説明文の番号と一致していますので、参照してください。

3. PMT 電圧値を設定するスキャン番号をクリックします (この例では Scan3 が選択されている)。

- 4. Adjust PMT パートで **Pre Scan** タブを選択します。
- 5. Selected にチェックを入れます。
- 6. Pre Scan 画像中の興味にある範囲をクリックバラッグで選択します。
- 7. 選択した範囲のシグナル強度が振り切れない PMT 電圧値が算出され、Calculated PMT に表示されます。
- 8. Use PMT ボタンを押すと自動計算された PMT 電圧値が、説明③のエリアに入力されます。
- 9. すべてのスキャン番号で、3-8の操作を繰り返し、PMT 電圧値を設定します。
- 10. Scan ボタンをクリックします。

プレビュー画像が View Image ウィンドウに表示されます。スキャンが完了すると、Image folder フィールド で選択したフォルダに画像ファイルが自動で保存されます。

シミュレーション機能を利用した PMT 電圧値最適化

この方法では、Pre Scan 画像を元に、PMT 電圧値を変えてスキャンした場合のシミュレーション画像を表示できます。自分の好みの画像が得られる PMT 電圧値を設定することができます。

- 1. Pre Scan ボタンをクリックします。
- Pre Scan イメージが View Window に表示されます。
 以下イメージ中の番号は説明文の番号と一致していますので、参照してください。

- 3. PMT 電圧値を設定するスキャン番号をクリックします (この例では Scan3 が選択されている)。
- 4. Adjust PMT で Estimated をクリックして選択します。
- Whole area か Selected を選択します。
 Whole area を選択すると Max intensity に表示される数値は、画像全体に対しての値になり、
 Selected を選択すると、Pre Scan 画像中の興味にある範囲をクリック/ドラッグで選択でき、Max intensity に表示される数値は、その範囲内での値になります。
- PMT ruler を左右に動かすと、その PMT に設定した場合のイメージが表示されます。
 ピンク色に表示される部分はシグナル値が振り切れている(飽和している)ことを示しています。
- 自分の好みのシミュレーション画像になったところで、 Use PMT ボタンを押すとそのときの PMT 電圧 値が、説明③のエリアに入力されます。
- 8. すべてのスキャン番号で、3-8の操作を繰り返し、PMT 電圧値を設定します。
- 9. Scan ボタンをクリックします。
- プレビュー画像が View Image ウィンドウに表示されます。

6.4 スキャンの完了、停止

スキャンが完了すると、Image folder フィールドで選択したフォルダに画像ファイルが自動で保存されます。

スキャンを停止するには、Stop ボタンをクリックします。

画像は保存されますが、未スキャンの領域はデータ値 0 で保存されます。停止した位置からスキャンを再 開することはできません。

6.5 スキャン終了後にできること

Max intensity の確認、コントラスト調整・画像反転・イメージの.jpg 形式保存などができます。

保存ファイルについて

スキャン終了後は、選択したフォルダに「Name」.ds ファイルと、「Name」.dir という新しいフォルダ が作成されます。この新しいフォルダ内には、「Name」.ds ファイルと複数の「Name Standard (または Annotation) Method J.gel ファイルがあります。

「Name」.ds ファイルはスキャン済みのイメージを ImageQuant TL で重ねることができ、個々のスキャンチャネル出力である gel ファイルは、個別のファイルとして閲覧できます。

7. Phosphor モード: RI 標識サンプル (ストレージフォスファス クリーン/イメージングプレート)のスキャン

7.1 スキャン条件設定

1. Control Software メインウィンドウの Phosphor Imaging タブを選択します。

Amersham Typhoon Scanner	87.5		
Amersham Typhoon			?
Fluores Phosphor Imaging Densitom	etry 3	4	View Image
Method [Phosphor imaging method-P] ~	Pixel Size 100	m v Stage/Area 2	0x40 ~
1 0 [Phosphor] × 2 Sensitivity 1000 4000 PMT(V)		14 13	
		11 10 9	
		8	
		5	A
		2	
		ABCDEFC	JHIJKEMNOPQ
Image folder C:(Typhoon images		~ Browse	Total file size : 16.03 Scan time : 13
File name WWWMDD-hhmmss	Format(s) 🗌 .gel 🖌 .img	.tif Note	Stantonie: 15
Save Method Delete Method	7		Scan
Laser Chur		DMT Status	
Laser Filter	4	Pini Status	

2. Sensitivity の設定

光電子増倍管(PMT)に加える電圧を選択します。

. Sensitivity 🔵 1000 💿 4000

富士フイルム社 BAS シリーズで用いられる S 感度で感度設定するときは、(S)1000 または(S)4000 を選択します。

O PMT(V) ---

任意の PMT 電圧値を入力する場合は、PMT(V) を選択すると入力可能になります。PMT 電圧値 が高いほど感度が上がります。ただし PMT の電圧が高すぎると、画像が飽和してバックグラウンドが 高くなります。

	250V		1000V
数値	小	\Leftrightarrow	大
感度	低	\Leftrightarrow	高

3. Pixel size の設定

通常は 100 µm、ミニゲル(10x10 cm 程度)使用時は 50 µm を選択します。

	200	100	50	25	10	μm
画質	低い		\Leftrightarrow		高い	
スキャン時間	短い		\Leftrightarrow		長い	
画像容量	小さい		\Leftrightarrow		大きい	

4. スキャンエリアの設定

下図①Stage/Areaのタブでは、規定サイズの枠設定を選択できます。 規定枠以外の領域は、サンプルステージの縦横の数字とアルファベットを目安に、下図②上でマウ スをクリック/ドラッグすることで任意エリアを設定します。複数のスキャンエリアの作成もできます。

スキャン領域のサイズを変更する : 青いボックスの縁 をクリックアンドドラッグします。 新しいスキャン領域を追加する : クリックアンドドラッグ して、新しいスキャン領域を作成します。 スキャン領域の位置を変更する : 青いボックスをクリッ クアンドドラッグします。 スキャン領域を削除する : スキャン領域を選択し、コ ンピューターキーボードの Delete キーを押します。

- 5. Image folder フィールドで、画像ファイルを保存するフォルダを選択
- 6. File name フィールドに画像ファイルの名前を入力
- 7. 画像ファイル形式を選択

.gel、 .img、 .tif 形式から選択します。プレゼンテーション用に.tif 形式が必要な場合は、.gel、 .img 形式と同時に選択します。.tif 形式のみを選択することはできません。

.gel 形式

付属の ImageQuant TL 解析ソフトウェアで解析する場合に選択します。100,000 階調で表示されます。定量解析に適するデータ形式です。スキャン条件の情報も保存され、ImageQuant TL ソフトウェアで情報を確認することができます。

.img 形式

富士フイルム社の Image Gauge / Multi Gauge 解析ソフトウェア(販売終了)で解析する場合 に選択します。65,536 階調で表示されます。定量解析に適するデータ形式です。スキャン条件の 情報も保存され、Image Gauge / Multi Gauge 解析ソフトウェアで情報を確認することができま す。.img ファイル生成と同時に同じファイル名称で拡張子.infのファイルが生成されます。2つのファ イルはセットで取り扱う必要があります。

.tif 形式

プレゼンテーションには、.tif 形式を使用します。16bit Gray Scale で保存されますが、画像ファイル中の最大数値が65,535になるように数値変換されるため、定量的な分析には推奨されません。

7.2 **ステージへのサンプルセッティングとスキャナー本体へのセット**

- 1. IP stage の横に露出したストレージフォスファスクリーンが入ったカセットを置きます。

- 2. ストレージフォスファスクリーンをカセットから取り出す前に、周辺の照明を 20lux 以下に落とします (IP stage をセットし、装填部のドアを閉めるまで照明を落とした状態にしてください)。
- 3. カセットを開きます。
- 4. 吸引ロッドを使用して、次の要領でストレージフォスファスクリーンを引き上げます。

- 1. 吸引ロッドの一端をストレージフォスファスクリーンに押し付けます。
- 2. 吸引ロッドの反対側の端を指で覆います。
- 3. ストレージフォスファスクリーンを吸引ロッド で持ち上げます。
- 5. ストレージフォスファスクリーンの露光面(蛍光体が塗布してある白または青の面)を上に向けて、 IP stage の裏面(数字とアルファベットが表記されている面)に置きます。指を放して、ストレージフ ォスファスクリーンをセットします。

ストレージフォスファスクリーンは磁気を帯びており、それにより IP stage 所定の位置に保持されます。

- 6. スキャナーのドアを開けます。
- 7. IP stage を反転します。ストレージフォスファスクリーンの露光面が下、IP stage の枠の白い印字面 を上(取っ手を上向き)にして、ステージホルダーに置きます。

- 8. ステージをスキャナーの奥まで(つきあたるまで)押し込んでください。
- 9. スキャナーのドアを閉めます。

7.3 スキャンの実行と完了、停止

スキャンの開始

Scan ボタンをクリックします。

プレビュー画像が View Image ウィンドウに表示されます。

スキャンの完了と停止

スキャンが完了すると、Image folder フィールドで選択したフォルダに画像ファイルが自動で保存されます。 スキャンを停止するには、**Stop** ボタンをクリックします。

画像は保存されますが、未スキャンの領域はデータ値 0 で保存されます。停止した位置からスキャンを再 開することはできません。

7.4 **スキャン終了後にできること**

Max intensity の確認、コントラスト調整・画像反転・イメージの .jpg 形式保存などができます。

保存ファイルについて

スキャン終了後は、選択したフォルダに 7.1 のステップ 7 で選択したファイル形式 (.gel、 .tif、 .img) のフ ァイルが保存されます。

img ファイル生成と同時に同じファイル名称で拡張子.inf のファイルが生成されます。2 つのファイルはセットで取り扱う必要があります。

7.5 ストレージフォスファスクリーン/イメージングプレートの露光手順と注意事項

露光手順

- 1. 必要に応じて、ストレージフォスファスクリーンの表面とカセット内側の汚れを落とします。その際、柔らかく毛羽立ちのないティッシュと 70%のエタノールを使用し、埃と染みを除去します。
- 2. ストレージフォスファスクリーンを Eraser で初期化します。
- 放射性物質のサンプルをプラスチックのフィルムで包みます。シワを作らないように気をつけてください。
 ヒント: トリチウム ストレージフォスファスクリーンでトリチウムを検出する際は、ラップなどにくるまず、
 直接サンプルをのせてください。トリチウム ストレージフォスファスクリーンは 1 回だけ使用できます。
- 4. 上部カバーのボタンを両方ともスライドして、カセッテのロックを解除します。カセッテを開きます。

5. サンプル面を上にしてカセッテに装填します。

ゲージの格子を、サンプルの位置とストレージフォスファスクリーンの位置を合わせるための目安として 利用してください。サンプルは、カセッテの縁から遠ざけます。さもないと、記録したデータの信頼性が 低くなります。

6. 下図を参照して、ストレージフォスファスクリーンの露光面とサンプルが合わさるように、ストレージフォスファスクリーンをカセッテに装填します。ストレージフォスファスクリーンの切り欠きは、サンプルの方向とストレージフォスファスクリーンの方向、および、ステージに貼付ける際の方向(スキャン)方向を合わせるためにご利用ください。

ストレージフォスファスクリーンの切り欠きをカセッテ左手前に合わせます。

- カセッテを閉じます。カバーがロック位置に入るまで、カセッテのカバーを押します。 (カチッと音がする までしっかり閉めてください。)
- 必要な時間露光します。
 ヒント: ストレージフォスファスクリーンに必要な露光時間は、x線フィルムに必要な時間の約 20 分の1です。

ストレージフォスファスクリーン/イメージングプレート 使用上の注意点

- 水分にご注意ください ストレージフォスファスクリーンには耐水性を保たせてありますが、水分によって感度が低下し、スト レージフォスファスクリーンのリニアリティが保てなくなる場合があります。サンプル露光の際にはサンプ ルの水分を乾燥させた状態でお使いください。また乾燥できないサンプルの場合には、食品用ラップ フィルムでサンプルをしっかり包み、十分に気密が保てるようにしてお使いください。
- 揮発性の溶媒にご注意ください ジクロロメタン・クロロホルム・アセトン・酢酸等の溶媒を含んだサンプルのオーバーナイト以上の露出 は、ストレージフォスファスクリーン表面の保護膜を収縮させ、プレートを変形させる場合があります。 このようなサンプルは食品用ラップフィルムで二重にしっかり包み、十分に気密を保って露出してくだ さい。
- 手袋を着用してください ストレージフォスファスクリーンを扱う際は、表面汚れに対する保護のため、綿手袋を着用してください。またカセッテから取り出す際は吸着盤を使用してください。素手(爪)で外すと、徐々にエッジ部分が剥離して使用できなくなる恐れがあります。
- ストレージフォスファスクリーンの清掃について ストレージフォスファスクリーン表面の清掃は乾いた綿製の布等で拭いてください。水分は禁物です。

落ちにくい汚れは、無水エタノール(試薬 1 級または特級)に少し湿らせて拭いてください。ただし、 保存条件の悪い無水エタノールはストレージフォスファスクリーンを劣化させることがあるので、褐色 試薬ビンに入ったままのもの、またはメーカー指定の条件で保存されているものを使用してください。

- 5. 露光終了後のストレージフォスファスクリーンについて 露光後のストレージフォスファスクリーンはスキャンが終了するまで、光を避けてください。もし光にさら されると、ストレージフォスファスクリーンの画像情報が失われることがあります。
- 6. スキャン終了後のストレージフォスファスクリーンは、初期化して保存してください。

8. Densitometry モード: 可視サンプルのスキャン方法

8.1 スキャン条件設定

1. Control Software メインウィンドウの Densitometry タブを選択します。

	Amersham Typ	ohoon							? (ì
	Fluorescence Ph	osphor In 1	Densitometry	J	3		4	View Image	\$
2	Method [Digi-Blue met	hod-D]	-	ľ	Pixel Size 50 µ		Stage/Area	Digitization	~
	1 O O [DigitB] PMT (V): Fixed		~			16 15 14			16
	Placement of spacers and	i plate				13			13
	stage		Plate	iritizatio	on A	11 109 88 7 8 5 4 9 7 8	A B C D E	FOHIJKLMNO	11 9 8 7 6 5 4 3 2 1 P Q R
5	Image folder Cl(Typhoo	n images				~	Browse	Total file size : Scan time :	7.63 MB 7 min
6	File name YYYYMMC	D-hhmmss		Format(s)		🕑 .tif 💦 N	ote		
					7			Pre Scan	Scan
	Laser 1: • 488 nm 4: 1 2: • 532 nm 5: 1 3: • 635 nm	0 685 nm 0 785 nm	Filter 1: • IP 4: 2: • Cy2 5: 3: • Cy3 6:	Cy5 (Cy2(LP) (Cy3(LP)	7: 🛑 IRshort 3: 😑 IRlong	PMT Bi-alkali Multi-alkal	Statu Rea	is idy	

2. Method の選択

Digitization Method Blue (Blue レーザー):銀染色ゲルなど **Digitization Method Green** (Green レーザー): CBB 染色ゲルなど **OD Method**:相対光学密度測定

【注意】OD Method で精度を得るには、0~1 の範囲で相対値を測定し、スキャン領域を 10×10 cm (小サイズのゲル)に制限することをお奨めします。1を超える相対的な OD 値を定量化に使用すること は推奨しません。ゲル間で相対的な OD 値を比較することも推奨しません。

3. Pixel size の設定

サンプルサイズや対象によって異なります。ラダー状の電気泳動パターンならば、100-200 µm 程度、 ミニゲル(10x10 cm 程度)の2次元電気泳動パターンならば 50-100 µm 程度が目安です。

	200	100	50	25	10	μm
画質	低い		\Leftrightarrow		高い	
スキャン時間	短い		\Leftrightarrow		長い	
画像容量	小さい		\Leftrightarrow		大きい	

4. スキャンエリアの設定

下図①Stage/Areaのタブでは、規定の枠設定を選択します。 規定枠以外の領域は、サンプルステージの縦横の数字とアルファベットを目安に、下図②上でマウ スをクリック/ドラッグすることで任意エリアを設定します。

複数のスキャンエリアを作成できます。下図は A/B 2 箇所のエリアが設定されている例です。

スキャン領域のサイズを変更する : 青いボックスの縁を クリックアンドドラッグします。

新しいスキャン領域を追加する : クリックアンドドラッグして、新しいスキャン領域を作成します。

スキャン領域の位置を変更する: 青いボックスをクリック アンドドラッグします。

スキャン領域を削除する: スキャン領域を選択し、コン ピューターキーボードの Delete キーを押します。

- 5. Image folder フィールドで、画像ファイルを保存するフォルダを選択
- 6. File name フィールドに画像ファイルの名前を入力
- 7. 画像ファイル形式を選択
 .tif 形式のみを選択できます。

8.2 ステージへのサンプルセッティングとスキャナー本体へのセット

1. Fluor stage に Digitization/OD spacer を下図の 1 と 2 、 3 と 4 の間にセットします。上から Digitization または OD の文字が見えるようにします。

2. Fluor stage にゲルまたはメンブレンを置きます。メンブレンはスキャン面を下向きにセットします。

- 3. ゲルまたはメンブレンとステージとの間の気泡を取り除きます。
- 4. Digitization plate をサンプルの上に置きます。

5. スキャナーのドアを開け、Fluor stage を枠の印字面が上になるように本体のステージホルダー上にセットし、奥まで(つきあたるまで)押し込んでください。

8.3 スキャンの実行と完了、停止

スキャンの開始

Scan ボタンをクリックします。

設定条件で目的サンプル検出ができるかを確認したい場合は、初めに Pre Scan すると便利です。

Pre-Scan

解像度 1000 μm、短時間でのスキャン。条件設定した PMT 電圧値で、目的のサンプルが検出されるかを確認する時に使用します。

Scan

条件設定した解像度でのスキャン。最終的な解析用データとして使用します。

スキャンの完了と停止

スキャンが完了すると、Image folder フィールドで選択したフォルダに画像ファイルが自動で保存されます。 スキャンを停止するには、**Stop** ボタンをクリックします。

画像は保存されますが、未スキャンの領域はデータ値 0 で保存されます。停止した位置からスキャンを再 開することはできません。

8.4 スキャン終了後にできること

Max intensity の確認、コントラスト調整・画像反転・イメージの.jpg 形式保存などができます。

保存ファイルについて

スキャン終了後は、選択したフォルダに.tif ファイルが保存されます。

9. 試薬ごとの推奨光源とフィルター一覧

搭載されている光源/フィルターは機種により異なります。2 章のシステム構成をご確認ください。

光源 488 nm

試薬	Ex. Max (nm)	Em. Max (nm)	推奨フィルター
Alexa Fluor 488	496	519	525BP20
AttoPhos	482	560	525BP20
Cy2	489	506	525BP20
DY-485XL	485	560	525BP20
ECF	440	560	525BP20
ECL Plus	430	503	525BP20
EGFP	489	508	525BP20
FAM	490	520	525BP20
FITC	494	520	525BP20
Pro-Q Emerald488	510	520	525BP20
Silver Stain	—	_	525BP20
SYBR Gold	495	537	525BP20
SYBR Green I	494	521	525BP20
SYBR Green II	492	513	525BP20
SYBR Safe	502	530	525BP20
SYPRO Orange	472	570	525BP20/LPG550
SYPRO Ruby	450	610	525BP20/LPG550
SYPRO Tangerine	490	640	525BP20/LPG550
Qdot 605	_	603	525BP20/LPG550
Qdot 655	_	655	670BP30/LRP660
Qdot 705	_	702	LPR660
Qdot 800	_	792	LPR660

光源 532 nm

試薬	Ex Max (nm)	Em Max (nm)	推奨フィルター
Alexa Fluor 532	532	553	570BP20
Alexa Fluor 555	555	565	570BP20
СВВ	_	_	570BP20

СуЗ	550	570	570BP20
DY-520XL	520	664	LPG550
EtBr	605	605	570BP20/LPG550
HEX	535	553	570BP20
HNPP	550	562	570BP20
Pro-Q Diamond	555	580	570BP20
RITC	554	577	570BP20
ROX	535	567	570BP20
SYPRO Red	547	631	670BP30/LRP660
TAMRA	542	568	570BP20

光源 635 nm

試薬	Ex Max (nm)	Em Max (nm)	フィルター
Alexa Fluor 647	650	665	670BP30/LRP660
Cy5	649	670	670BP30/LRP660
DDAO Phosphate	634	665	670BP30/LRP660
DY-635	647	671	670BP30/LRP660
Storage Phosphor	_	_	IP
Screen			

光源 685 nm

試薬	Ex Max (nm)	Em Max (nm)	フィルター
Alexa Fluor 680	679	702	IRshort 720BP20
Alexa Fluor 700	702	723	IRshort 720BP20
Cy5.5	675	694	IRshort 720BP20
DY-676	674	699	IRshort 720BP20
DY-682	690	709	IRshort 720BP20
IRDye 680	683	710	IRshort 720BP20
IRDye 700	689	700	IRshort 720BP20
Krypton Infrared	690	718	IRshort 720BP20

光源 785 nm

試薬	Ex Max (nm)	Em Max (nm)	フィルター
Alexa Fluor 750	749	775	IRlong 825BP30
Alexa Fluor 790	784	814	IRlong 825BP30
DY-781	783	800	IRlong 825BP30
IRDye 800	778	806	IRlong 825BP30

標準フィルター

Amersham Typhoon scanner IP	IP 390BP
Amersham Typhoon scanner RGB	IP 390BP、Cy2 525BP20、Cy3 570BP20、Cy5 670BP30
Amersham Typhoon scanner 5	IP 390BP、Cy2 525BP20、Cy3 570BP20、Cy5 670BP30、
	IRshort 720BP20、IRlong 825BP30

オプションフィルター

Amersham Typhoon scanner RGB、 5 共通 LPB515、LPG550、LPR660

10. Amersham Eraser ストレージフォスファスクリーン/イメージン グプレート消去機

10.1 Amersham Eraser 装置概要

Amersham Eraser はストレージフォスファスクリーン/イメージングプレートの画像を消去します。本章はシ ステム全体の使い方、機能を簡略化して説明しています。詳細な使い方は、英文マニュアルをご覧下さ い。

10.2 Amersham Eraser システム構成とパーツ名称

パート	機能
1	トレイ
2	LED インジケーターパネル

パート	機能
1	電源スイッチ
2	電源ケーブルコネクター

3、4	ラベル
5	通気孔

操作パネル

消去のスタートと消去時間の設定は前面パネルで行います。

マーク	インジケーター/ ボタン	説明	
	白	スタンバイ(電源	投入後)
	青	実行(消去)	
			総消去時間
			10 min
			20 min
			40 min
			60 min
•	赤	エラー	
	白	実行ボタン	
		設定した消去時間で実行します。	
		実行中の消去	時間を変更したり、Amersham Eraser
		をスタンバイモー	ドに切り替えたりもできます。

10.3 Amersham Eraser の起動

- 1. 電源を投入します
- 2. インジケーターが光ると Amersham Eraser はスタンバイモードになります。

10.4 **ストレージフォスファスクリーンの消去**

以下の手順に従って、スクリーンを消去してください。

1. 装置下のスロットに指を差し込み、トレイを引き出します。

2. スクリーンを、露出面を上向きにトレイに載せます。

- 3. トレイを元の位置まで押し込みます。
- 4. 実行ボタンを押し、消去時間を設定、実行します。

10.5 消去の終了

消去時間が経過すると、青のインジケーターが右から左に順番に消灯します。 消去中にトレイを引き出すと、その時点で消去がキャンセルされます。

- 1. トレイを引き出し、手前中央のくぼみに指を差し入れ、スクリーンを外します。
- 2. トレイを元の位置まで押し込みます。

消去時間のガイドライン

条件	消去時間
通常	10 分以上
露出過剰	40 分以上
不明	40 分以上

ヒント

ストレージフォスファスクリーンが完全に消去されているかどうかわからない場合は、ストレージフォスファスク リーンの試し読みを実行してください。

サンプル露出の直前にストレージフォスファスクリーンを消去します。ストレージフォスファスクリーンが一度完 全に消去されたとしても、一定時間が経過すると、バックグラウンドノイズが増加します。

誤った取扱いをした場合に生じる危険や損害の程度を、 次の区分で説明しています。

このしおりには、弊社機器に関する一般的な注意事項を記載しています。取扱い の詳細は必ず製品原付の使用説明書をご覧ください。

図記号の意味は次の通りです。

●は、必ず実行していただく 「強制」を示します。

禁止

電源コードを途中で接続しない、 タコ足配線をしない

火災・感電・故障の原因になります。

禁止

修理・分解・改造はしない 火災・感電の原因になります。 1

取扱説明書に指定された規格の

コンセントを使用する

指定された規格以外で使用すると

火災・感電の原因になります。

いときは使わない

プラグを抜く

異常時は、運転を停止して電源ブ ラグを抜く

電源コードや電源プラグが傷んだ

り、コンセントの差し込みがゆる

感電・ショート・発火の原因になります。

同梱の電源コード・電源プラグを 他の電気機器に使用しない 故障・火災・感電の原因になります。

お問合せ先

Cytiva (サイティバ)

グローバルライフサイエンステクノロジーズジャパン株式会社 〒169-0073 東京都新宿区百人町 3-25-1 サンケンビルヂング お問い合わせ:バイオダイレクトライン Tel:03-5331-9336 e-mail: <u>tech-jp@cytiva.com</u> www.cytivalifesciences.co.jp