

Biacore T200

アプリケーション別操作手順書

タンパク質一般編

Ver.202108

重要

本日本語マニュアルは、Biacore の用途別の典型的**基本的操作**手順を記載しています。装置の規制対応、安全性注意事項、使用するセンサーチップやキット個別の詳細条件設定等は、 cytivalifesciences.com 内各製品の Instruction For Use (IFU, 英語)を併せてご参照ください。 (各製品ページ"Related Documents"よりダウンロード)

目次

1. 実験を始めるまえに
1-1. システムの起動
1-2. 測定前の基本操作・設定
2. 基本操作
2-1. サンプルラックの取り扱い
2-2.3 つの測定モード6
3. 測定系のデザイン
3-1. 目的別の測定ワークフロー図7
3-2. 典型的な目的別リガンド固定化法7
3-3. 固定化法の大分類(直接法とキャプチャー法)8
4. 目的別測定解析手順
4-1. センサーチップ CM5 への標的キャプチャー用抗体の固定化8
4-2. スクリーニング9
4-3. キャラクタリゼーション 17
5. メンテナンス・システムチェック・シャットダウン27
5 -1. メンテナンス
5-2. システムチェック
5-3. シャットダウン
6.知っていると得する TIPS

1.実験を始めるまえに

1-1. システムの起動

1-2. 測定前の基本操作・設定

手順	操作項目	注意点
1	センサーチップのドック	自動的にセンサーチップポートが開かない場合は、
		Toolbar のセンサーチップの絵のアイコンを押す。 🏝
2	ランニングバッファーによる prime	Menu bar の Tools → Prime からスタート
3	温度設定	Menu bar $\mathcal O$ Tools $ o$ Set Temperature

2. 基本操作

2-1. サンプルラックの取り扱い

手順	操作項目	注意点
1	ラックトレイの出し入れ	・入れるときは"カチッ"と音が鳴るまで
		・サンプルコンパートメントの扉は 60sec で自動的に閉まります。
2	対応バイアル	下図
	①サンプルトレ トレイ下部の円 ボタンを奥に押	イの取り出し方 I形の ロックが外れて引き Itせます ITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
	Type 2 Type 1	
	低分子測定でDMSO含有 下記の割品が良く使用され	の溶液を使用する場合はポリプロピレン製のプレートが推奨されます。
	Microplate 96-well, 65	0201,Greiner
	Microplate 384-well, 7	81280,Greiner
	Microplate 96-well (BR-10 Microplate 384-well (BR-1	05-03) 専用シール:Microplate Foil (96 well) (28-9758-16) 005-05) 専用シール:Microplate Foil (384 well) (BR-1005-77)
	Rubber caps, type 3 Rubl	per caps, type 2 Rubber caps, type 5
	BR-1005-02 BR-1	004-11 T BR-1006-55
	7 mm Plastic Vials 1.5 m	nl Plastic Vials 16 mm Glass Vials 15 mm Plastic Vials
	BR-1002-12 BR-1	002-87 BR-1002-09 BR-1006-54

2-2.3 つの測定モード

測定モード	モード名称	特徴・用途
1	Manual run	・1 インジェクションごとにマウス操作で行う
	i⊂,	・サンプル消費量が少ないがラフなデータ
		・ラフな条件検討用
		・低分子測定の場合は(レスポンスが小さいので)あまり使わない。
		・k』、k』、KD 値などを解析ソフトウエアで解析できない。
2	Application	・典型的な定型の測定系を Wizard テンプレート形式で作成する。
	Wizards	・一般的に固定化にはこのモードを用いる。
1	1	・以下本マニュアルでは Wizard と省略する。
3	Methods	・一部の測定法やより複雑な測定に対して用いる
	呈,	・テンプレートは存在する。
		・シングルサイクルカイネティクス法
		・複数の抗体の測定
		・フローセルを 4 つ使用した Kinetics 解析

120	Bi	acore T	200 C	ontrol	Softwar	e
1	File	View	Run	Tools	Help	•••••
ł		H 루	1	+14	くる	

3.測定系のデザイン

3-1. 目的別の測定ワークフロー図

3-2. 典型的な目的別リガンド固定化法

サンプル	スクリーニング	キャタクタライゼーション(ka、kd、KD算出のため)
抗体	各種抗体Capture kit Sensor Chip Protein A / Protein G	各種抗体Capture kit Sensor Chip Protein A / Protein G
低分子	Sensor Chip NA/SA	Biotin CAPture kit Sensor Chip NA/SA
その他	各種 Capture kit Amine Coupling Kit	Biotin CAPture kit 各種 Capture kit Amine Coupling Kit

各種 Capture kit の固定化⇒ 4-1 参照

スクリーニング⇒ **4-2 参照**

Biotin CAPture Kit を用いたキャラクタリゼーション⇒ **4-3 参照**

Amine Coupling を用いた固定化 (一般的にタンパク質変性リスクがやや高い)⇒ 6-1 参照

3-3. 固定化法の大分類(直接法とキャプチャー法)

	直接法(アミンカップリング)	キャプチャー法
Pros	古典的方法。 キャプチャー法でCapturing moleculeの固定化にもよく使われ る。→ アミンカップリングのページ参照。 参照論文が多い。 リガンドの消費量が少ない。	固定化によるリガンドの失活リスクがほとんどない。 再生条件の検討不要。 → <mark>実験成功の確実性。</mark>
Cons	アナライトを剥がす再生条件の検討が必要。見つけられないケー スがある。 リガンドの固定化時の酸に伴う変性。 → <mark>実験成功の不確実性。</mark>	固定化量が比較的少ない(多くの場合問題ない)。 リガンドの消費量が多い。 リガンドのタグに依存。→Biotin化は汎用性が高い。 Hisタグの場合、キャプチャー後のペースラインドリフトが問題になる ことがある。

4. 目的別測定解析手順

4-1. センサーチップ CM5 への標的キャプチャー用抗体の固定化

A. 手順概略

手順	操作項目	参照
1	センサーチップの選択	
2	Wizard テンプレートを	キャプチャー用抗体は使用するすべての Flow Cell に固定化します
	用いた固定化	(使用するすべての Flow Cell をチェックする) <mark>6-1 参照</mark>

B. 準備する試薬・サンプル

各センサーチップの Instruction For Use (IFU)を併せてご参照ください

4-2. スクリーニング

主に、His Capture Kit を使用した例で説明します。

A. スクリーニング測定を始める前に

1	ポジティブコントロールを用いた標的タンパク質の特異的結合の確認(6-9参照)
2	・Wizard による Binding Analysis
	・アナライトを、結合レスポンスの高さで選出する

B. 準備する試薬・サンプル

	操作項目	用途、備考	
必須	ランニングバッファー	メソッド作成時の画面から必要量を確認。加えて自動測定後の	
		stanby flow での放置時間分として 65ml/24hr	
必須	リガンド溶液		
必須	アナライト溶液	選出したいアフィニティー基準を目安に添加濃度を設定	
ほぼ必須	ポジティブコントロール	有れば必須。リガンド標的分子の活性確認や Control	
		Adjustment 補正用として (4-2D⑤参照)	
オプション	ネガティブコントロール	Control Adjustment 補正用 (4-2D ⑤ 参照)	

<u>C. メソッドの作成</u>

C-1.システムの準備

手順	操作項目	注意点·説明
1	Injection Sequence	Flow path、Chip、Injection cycle を選択。
2	Run conditioning cycle	起動後、Prime 実施済みであればチェックを外す
3	Startup	ランニング緩衝液で3回以上
	Binding Analysis - Injection Sequence	X

Binding Analysis - Injection Sequence X	
Detection Chip Elow path: 2-1 ✓	
1	Binding Analysis - Setup
LIGAND CAPTURE	Conditioning Bun conditioning cycle Solution
Competition	Contact time: (s) Number of injections 8
REGENERATION 1	Startup Bun startup cycles Solution: buffer Number of cycles 3 ~ 3
Help <bsck next=""> Qlose</bsck>	Help < <u>Back</u> Next > Close

C-2. 添加条件等の設定

手順	操作項目	注意点·説明
1	Capture	His-Capture kit の場合、Contact Time:120 秒程度/Flow rate 10 µl/min.
2	Sample	Contact Time/Dissociation time:要検討(6-2 参照)
		/ Flow rate 10 μl/min.
3	Regeneration	His-Capture kit の場合、 付属の Glycine-HCl pH 1.5 を 60 秒

Binding Analysis - Injection Parameters	×
Ligand capture	٢
Ligand: His-Protein	
Contact time: 120 (s Elow rate: 10 (μ	Stabilization period 0 (s
Sample	
Contact time: 120 (s <u>F</u> low rate: 30 (µ	Dissociation 120 (s 🔶 2)
Regeneration	
Solution: Glycibne-HCI pH1.5	☐ High ⊻iscosity solution
Contact time: 60 (s <u>F</u> low rate: 30 (µ	Stabilization period () (s
Help	< <u>B</u> ack <u>N</u> ext > <u>C</u> lose

C-3. サンプル個別条件の設定

手順	操作項目	注意点・説明
1	Sample 情報	サンプル名の入力
2	Control Sample	Positive control などを定期的にインジェクションする場合に設定。
		下図では Positive Control という名称で、10 Cycle に 1 回。
3	Rack Position	表示に従って分注 (2-1 参照)
		分注後 Next→測定開始

Binding Analysis - Rack Positions			3	- 🗆 X
Reagent Rack 2 ~	Position	Volume (µl)	Content	Туре
	R1 A1	88	Positive Control	Control sample
	R1 A2	88	Positive Control	Control sample
$_{2}$ $)_{040}$ $)_{040}$ $)_{040}$ $)_{040}$	R1 A3	88	Positive Control	Control sample
	R1 B1	88	Sample1	Sample
	R1 B2	88	Sample10	Sample
	R1 B3	88	Sample11	Sample
<u>A B'C D E'F G</u>	R1 B4	88	Sample12	Sample
96 Well Microplate V	R1 B5	88	Sample13	Sample
	R1 B6	88	Sample14	Sample
120000000	R1 B7	88	Sample15	Sample
"00000000	R1 B8	88	Sample2	Sample
100000000	R1 B9	88	Sample3	Sample
≥00000000	R1 B10	88	Sample4	Sample
\$0●000000	R1 B11	88	Sample5	Sample
70000000	R1 B12	88	Sample6	Sample
• 000000	R1 C1	88	Sample7	Sample
\$0000000	R1 C2	88	Sample8	Sample
40000000	R1 C3	88	Sample9	Sample
30000000	R1 D1	244	buffer	Startup
20000000	R2 A1	1702	Glycibne-HCl pH1.5	Regeneration
	R2 B1	694	His-Protein	Capture
X 8 2 8 5 7 7 8 4	R2 B2	124	His-Protein	Capture
<u>H</u> elp <u>M</u> enu ▼ <u>Ejec</u>	t Rack		< <u>B</u> ack <u>N</u>	ext > <u>C</u> lose

D. スクリーニングプロットのデータプロセッシングと解析

手順	操作項目	注意点·説明
1	解析ソフトで Run ファイ	・解析ソフト Biacore T200 Evaluation software
	ルを開く	・run 終了時、自動的に立ち上がる
		・別日に解析の場合は.blr(結果ファイル)を Open
2	データ QC チェック	・④Result Plot で評価対象にしない異常サイクルを除外する。(右
		クリック→Exclude Cycle)
		・例えば、Binding to reference が大きいものなど測定者の運用ポリシ
		ーに合致する基準を設定。
		・画面左側のデフォルトのプロットまたはカスタム QC プロットを利用
3	Result Plot の作成	・多くの場合"Stability"のレポートポイントデータ(例 Fc=2-1 など)を
		利用
4	Result Plot の補正・	・各プロットを公平に評価するための各種補正操作
	annotation(注釈)	・Ranking: プロットのレスポンス高範囲別にフラグを立てる。
		・Cut-off: ネガティブコントロールの 3×SD が Automatic の初期設定。
		・プロットに対しての注釈の入力(プロット右上の Tool メニュー内 Edit
		Annotation から"注釈名"と対応する"コメント"を設定
5	結果のエクスポート	⑤のデータプロセッシングを経たデータ Table 等を Excel 形式でのエク
		スポート(メニューバーの File→Export)

<u>手順①~</u>3

手順④データプロセッシング前後の違いおよび設定項目と補足図

各種補正ボタン・	設定項目	説明
タブ		
Brank Subtraction		ブランク(0 濃度)レスポンスの差し引き
	Blank sample	ネガティブコントロール、または、サンプルのゼロ濃度(Sample
	name	Conc=0)から選択
	Subtraction settings	差し引き方法をプルダウンメニューから選択
Molecular	-	各プロットレスポンスを分子量でノーマライズ
Weight		100 × レスポンス(RU)/ 分子量(Da)
, ajuotinone		プロットの Y 軸の単位:100 × RU / Da
Capture		各プロットレスポンスをキャプチャー量でノーマライズ。抗体スクリ
Adjustment		ーニングで良く使用される。
Adjustment For	Positive control	リガンドのサイクル(時間)経過後の結合活性の低下による
Controls		レスポンスの下降をノーマライズ
		下記補足 Adjustment for controls 参照
	Negative control	下記補足 Negative control, Blankの違いと設定例参照
	Fitting function	Fitting 方法の選択
		Linear: Y = aX + b を適用
		Polynomial: Y = aX ² + bX + c を適用
Median Filter		プロットのベースラインのトレンドにドリフトや周期性がある場合
(オブション)		に適用
		結合分子と非結合分子を見分けやすくなる。
		非結合分子のプロットレスポンス変動範囲(Y 軸方向)を
		定義し、任意に設定された X 軸 Window 内のレスポンスの中
		央値を Window 内の Plot 高から差し引く計算を行う。
Ranking/Cut-off		
	Ranking	複数の Threshold を設定。各ランキングに属するデータを返
		す。右 Table 中に Ranking Value を表示
	Cut-Off	単一の Threshold を設定。各ランキングを属するデータを返
		す。右 Table 中に above/below cut-off を表示
Annotation		
	Add Annotation	Annotation(注釈)のタイトルを入力
	Add Comment	Annotation で定義したタイトルの中でのコメントを定義する

補足:プロットの右クリックからセンサーグラム形状の確認

Negative control: 特異的結合が無いと想定される化合物

Blank: 濃度 0 の sample

😸 Keyv	vord Table				
Cycle	Assay step purpose	Sample	Conc (µM)	MW (Da)	
~	~	~	~	~	
1	Startup	buffer	1	1	
2	Startup	buffer	1	1	
3	Startup	buffer	1	1	
4	Solvent correction				Negative Control/t分子
5	Control sample	negative	10	300 -	← 量と濃度値は0ではない
6	Control sample	negative	10	300	
7	Control sample	Positive	80	331.78	
8	Sample	Blank	0	0 -	← Blankは濃度値かりのもの がサンプルタに依ちせる
9	Sample	T_6	200	205	に遅ぶことができる
10	Sample	T_7	200	267.3	
11	Sample	A_1	200	214.2233	
12	Sample	A_2	200	278.322	
13	Sample	A_3	200	266.293	
14	Sample	A 4	200	214 609	

<u>補足: Negative control, Blankの違いと設定例</u>

<u>補足:Adjustment for controls</u>

4-3. キャラクタリゼーション

主に、Biotin Capture Kit を使用した例で説明します。

A. キャラクタリゼーション測定を始める前に

A-1.	サンプルの添加濃度・時間の設定(6-2 参照)
A-2.	適切なメソッドの検討(下表参照)

<u>A-1</u>

サンプルの添加濃度・時間の設定 6-2 参照

<u>A-2</u>

用途
・Biotin タグ付き、Biotin 修飾が可能 (6-4 参照)
・固定化ステップが不要
・His タグ付き
・Sensor Chip NTA は固定化ステップが不要
・アナライトが NTA へ非特異結合する場合 Sensor Chip CM5 + His Capture
kit
GST タグ付き
アミンカップリングによる直接法 (6-1 参照)

B. 準備する試薬・サンプル (Biotin Capture Kit を使用する場合)

	操作項目	用途、備考
必須	Biotin CAPture Kit	
必須	リガンド溶液	
必須	ランニングバッファー	メソッド作成時の画面から必要量を確認。加えて自動測定後の
		stanby flow での放置時間分として 65 ml / 24 hr
必須	アナライト溶液	

<u>C. メソッドの作成</u>

He Me	thods→Biacore Methods→CAP single-cycle kir	neticsを選択
C-1.	添加条件などの設定	
C-2.	Setup Run: サンプル個別条件(Variables)の設定	-
C-1 C-2 →	Method Builder - Main Overview Assay steps Qeneral Settires Conditioning Assay Steps Conditioning Cycle Types Sample Variable Sample Yerification Sample Setup Byn Sample	Concentration unit = nM Data collection rate = 18/b; Pask collection rate = 18/b; Pask collection rate = 18/b; Pask collection rate = 18/b; Pask collection = Dual Settings for casasy step "Conditioning" Temperature = 25 ° C Buffer = A Settings for cycle type "Conditioning" Reportation 1 Pag solution 80s © Reportation 2 RegioNution, 80s © Reportation 3 RegioNution, 80s © Report points
	Help Save Save As	Qlose

C-1. 添加条件等の設定

ボタン	用途
Overview	メソッドの全体構成の確認
General Setting	・Data collection rate:キャラクタリゼーションは通常10Hz
	・検出対象 Fc 数(single:1 つ、 Dual:2 つ、 Multi: 4 つ)の設定
	・温度設定
	など
Assay Steps	・Assay Steps(測定フローチャートの目的別に定義された"箱"(Step))の
	並び順や繰り返しの設定
	・各 Assay Step 内の添加条件を定義する Cycle Type の参照先の設定
	など
Cycle Types	・サイクル内の添加条件パターン(Cycle Type)の設定
Variables	・各サンプル情報(サンプル名など)をメソッドの規定値にするか、Setup Run
	で run 毎に入力するかの設定。
Verification	・作成されたメソッドに動作上矛盾がないかを検証する。検証確認後 Setup
	Run の入力を始める。

ここでは Assay Steps (Startup 部) と Cycle Types (Sample 部)の代表的な設定条件を図で例示 する。

Assay Steps

手順	操作項目	注意点·説明	
1	Assay Steps	Biotin CAPture kit では、Conditioning→Startup→Sample の 3 Steps	
2	Base Setting	Assay Step 名、測定目的、使用する Cycle Type の設定	
3	Assay Step Preparations	測定温度、ランニング緩衝液の使用ライン	
4	Recurrence	・他の Assay Step の何サイクルおきにこの Assay Step を実行するか	
		・本アッセイでは使用しないことが多い。	
⑤ Number of ・繰り返し測定するか。その場合、どのような設定か。		・繰り返し測定するか。その場合、どのような設定か。	
	replicates	・通常 Startup は 3 回とする。	

Method Builder - M	ain			×
Overvie <u>w</u>	🕂 New			-
<u>G</u> eneral Settings	X Delete	[Conditioning]	Conditioning 1 time as entered.	
Assay Steps >	Сору	Startup	•	
Cycle <u>T</u> ypes	A Move Un	[Startup]	Sample 3 times as entered.	
Variable	J Move Down	Sample [Sample]	Sample 1 time as entered.	
Verification				
Setup <u>R</u> un	Cycle Run List			
	Assay step proper	ties		
ſ	Base settings		Recurrence	
	Name:	Startup	Repeat assay step within:	
<u>2</u> 4	Purpose: S	Startup 🗸 🗸	○ Every 1 🛊 cycle	
	Connect to cycle type:	Sample v	O Distribute 1 🔹 occurrences evenly	
			Run assay step once first Run assay step once last	
ſ	Assay step prepara	ations	Number of replicates	
3≺	Temperature: 2	25	β 🌩 times	
	Buffer: /	A ∨	• As entered (1,2,3,1,2,3)	
			Order (1,1,2,2,3,3)	
			○ Random	
Help	Save Sav	/e <u>A</u> s	Qlose	

手順	操作項目	注意点·説明	
1	Cycle Type	・Biotin CAPture kit では、Conditioning として Regeneration x 3 回	
		・Sample について詳細確認 ②~③	
2	Commands	・この Cycle 内の添加コマンドの指定	
		・下図の場合、General(Biotin CAPture Reagent)、Capture(Biotin 化リガ	
		ンド)、Sample(アナライト)、Regeneration(再生)から構成されている。	
3	Setting	・General (Biotin CAPture Reagent) *デフォルトのまま	
		Contact Time:300 秒/Flow late:2 µl/min./Flow Path:Both	
		・Capture(Biotin 化リガンド添加)	
		複数のリガンドがある場合、Method variableの Capture Solution をチェック	
		1 種類の場合は、チェックを外してサンプル名入力。	
		Contact Time:要検討/Flow late:10 µl/min./Flow Path:Second	
		・Sample(アナライト添加)	
		Single Cycle kinetics で濃度 5 点	
		Contact Time/Dissociation time:要検討/Flow late:通常 30 µl/min.	
		✓ Flow Path: Both	
		・Regeneration(再生溶液) * デフォルトのまま	
		詳細は Biotin CAPture kit の IFU 参照 / Flow Path:Both	

Overview General Settings Assay Steps Cycle Types Variable Verification	Conditioning	Descr This The Caption Copy Copy Copy Copy Copy Copy Copy Copy	ption of selected cycle type cycle is used in sample steps, and control sample steps (if used), trains injections of Biotin CAPture reagent (to build the biotin are surface), biotinylated ligand (injected over second flow path sample and regeneration, sample inject is of the type Single cycle kinetics, with mmended 5 concentrations, ie number of sample injections in each di njection (Capture 1) is set to 3 min at 10 ul/min, this can be ged by the user, xample of sample concentration series, suitable for assay
Setup Run	Image: Second state of the second	Type: Simple cycle kinetics Sample sglution: Is variable Conjcentrations per cycle 5 Contact time: 120 Dissociation time: 600 (s) Flow rate: Stabilization period: 0 (s) Stabilization period:	3

C-2. Setup Run: サンプル個別条件(Variables)の設定

Setup Run	をクリック。		
Wizard の設定名	設定時のポイント		
Detection	リガンド固定化 Fc – リファレンス Fc		
Variable values	画面上部の各 Assay Step ごとに入力		
Cycle Overview	想定通りの順番でサイクルが並んでいるか確認		
System Preparation	・すでに Prime 実行済みであれば✔を外す		
	・Normalize は通常行わない		
Rack Positions	6-8 参照		
Estimated buffer	・十分な量のランニングバッファーがボトルにあることを確認する。(ランニングバッ		
consumption	ファーは、run 毎に調製		
	・インレットチューブがボトルの底近くまで達していることを確認		

Variables の設定例

手順	操作項目	注意点·説明		
1	Assay Step	Assay Step ごとの表示・入力選択		
2	Sample Solution	アナライトの名称の入力		
3	Conc/MW	適切な濃度(0濃度サイクルを含む)、分子量の入力		

Met	hod Builder - Variables						
ssay steps							
Sam	ple 🔶 (1)						
ariat	ble values for Assay Ste	ep Sample					
	Complementary lattice	0	0	Sample 1	0	0(5)(-11)	1000 (0-)
	Sample solution	Conc (1) (nm)	Conc (2) (nM)	Conc (3) (nM)	Conc (4) (nM)	Conc (5) (nM)	MW (Da)
1	Sample 1	U	U	U	U	U	
2	Sample 1	U	U	U	U	U	
3	Sample 1	2.4	12	60	300	1500	
*	↑						
				\sim			
	(2)			(3)			
						D 1 1 1 1 1	

<u>D. 解析(K_D、k_a、k_dの</u>算出)

手順	操作項目	注意点·説明
1	解析ソフトで Run ファ	・解析ソフト Biacore T200 Evaluation software
	イルを開く	・run 終了時、自動的に立ち上がる
		・別日に解析の場合は.blr(結果ファイル)を Open
2	特異的結合の確認	・センサーグラムの確認(6-9 参照)
3-1	Kinetics Screen	・センサーグラムの解離相の形状が一定の遅さで降下し ka、kaの算出が
		可能な場合に適用
④-2	Affinity Screen	・センサーグラムの解離相の形状が瞬時に降下して"箱型"である場合に
		K₀値のみの算出を目指す場合に適用

手順④-1Kinetics Screen

手順	操作項目	注意点·説明		
1	Kinetic Screen \pm	• Tool bar \mathcal{O} Screening $$ \rightarrow A Kinetic Screen		
	ード、解析対象サ	・Name 解析結果の名前(必要に応じて変更します)		
	ンプル等の選択	・Curve Type Reference Subtraction を選択		
		・Table の Include で、解析対象サンプルにチェック		
2	ブランク(0 濃			
	度)の選択	・下図参照		
3	ステータスの設定	Rejected 解析に持ち込まないセンサーグラム		
	(オプション)			
		Leared デフォルト設定、解析に持ち込むセンサーグラム		
		Flagged 解析に持ち込むが、Flag を立てるセンサーグラム		
4	センサーグラムの	・アナライト添加の切り替え時に発生するスパイクノイズの削除		
	一部削除(オプ	・一時的に異常形状になったセンサーグラム領域の削除		
	ション)			
5	フィッティング条件	Setting \rightarrow Fit Settings		
	の設定	・Model 解析モデルの選択(6-13-1 参照)		
		・Parameters (6-13-1 参照)		
		・Apply To Fitting 対象のセンサーグラムの選択		
5	解析結果の評価	6-14-1 参照		

②ブランク(0濃度)サイクルの再現性の確認と選択

③ステータスの設定

④センサーグラムの一部削除

(一括削除)

(個別のセンサーグラムの一部削除)

Thumbnails タブでセンサーグラムを選択後、右上の Tools→Select Data

⑥解析結果の評価

手順④-2 Affinity Screen

手順	操作項目	注意点·説明		
1	Affinity Screen \pm	• Tool bar \mathcal{O} Screening $ \rightarrow \mathbb{A}$ Affinity Screen		
	ード、解析対象サ	・ Name 解析結果の名前(必要に応じて変更します)		
	ンプル等の選択	・Curve Type Reference Subtraction を選択		
		・TableのIncludeで、解析対象サンプルにチェック		
2	ブランク(0 濃	・手順④-1 kinetics screen内 ②ブランク(0 濃度)サイクルの再現性の		
	度)の選択	確認と選択図参照		
3	ステータスの設定	Rejected 解析に持ち込まないセンサーグラム		
	(オプション)	Cleared デフォルト設定、解析に持ち込むセンサーグラム Flagged 解析に持ち込むが、Flagを立てるセンサーグラム		
		・手順④-1 kinetics screen 内 ③ステータスの設定図参照		
4	レポートポイントの	・画面左上の Settings の Report Point Settings		
	設定			
5	フィッティング条件	・Model 解析モデルの選択 (6-13-2 参照)		
	の設定	・Parameters (6-13-2 参照)		
		・Apply To Fitting 対象のセンサーグラムの選択		
6	解析結果の評価	6-14-2 参照		

④レポートポイントの設定

\land Report P	oint Settings	×
Calculate re	sponse at 4	seconds before injection stop \sim
with	5 🗸 seconds	
<u>A</u> pply To		
	Selected	🗹 <u>C</u> leared
		✓ <u>F</u> lagged
	Action will not apply to	accepted or rejected ser
<u>H</u> elp		OK Cancel

デフォルト設定:添加終了4秒前を必要に応じて変更

5.メンテナンス・システムチェック・シャットダウン

5-1.メンテナンス

A. 日常のメンテナンス(システム洗浄)の種類

毎週	Desorb (Menu bar の Tools → More Tools内(下図))に従い実行
毎月	Desorb and Sanitize (Menu bar の Tools — More Tools内(下図))

Tools 🛛		
Maintenance Tools Desorb Desorb and Sanitize Empty Buffer Tubing Normalize Wash Buffer Tubing Test Tools System Check Service Tools Software Problem Report Row System Wash Superclean		
This procedure removes adsorbed material from the flow system. Total run time is about 20 minutes. Do not run this procedure below 20°C. NOTE: Use the Maintenance Chip for this procedure. The surface on other sensor chips may be damaged by the solutions used.		
Help Start Cancel		

B.準備する試薬、消耗品・注意点

Desorb : (D) Desorb and Sanitize (D&S)	必要試薬・消耗品
D、D&S	Biacore Maintenance Kit, type 2
	・Desorb solution 1 は室温保存
D、D&S	Maintenance chip または使用済みのセンサーチップ
D&S	次亜塩素酸ナトリウム(研究用試薬)
	終濃度 0.6~1.0%に用事調整。
D、D&S	ランニングバッファーまたは超純水
D&S	10-50mM の Hepes または Tris バッファー

<u>C-1. Desorb(毎週)の手順</u>			
手順	説明		
チップのドック	Maintenance Chip (または使用済みセンサーチップ)の Dock		
温度設定	20℃以上(通常 25℃)に設定		
ウイザードの実行	ウイザードに従い Desorb solution 1, 2 をサンプルラックにセット		
(所要時間)	約 20 分		
実施後次の実験前	・自動的に Stanby flow(65ml/24hr)		
	・次の実験前に 3-4 時間以上の Stanby flow か Prime の 3 回実施		

C-2. Desorb and Sanitize (毎月)の手順

手順	説明	
チップのドック	Maintenance Chip (または使用済みセンサーチップ)の Dock	
温度設定	20℃以上(通常 25℃)に設定	
ウイザードの実行	洗浄溶液は装置左右のインレットチューブから吸引されシステム全体を洗浄	
	(いくつかのステップを下図に例示)	
(所要時間)	約1時間	
実施後次の実験前 ・自動的に Stanby flow(65ml/24hr)		
	・次の実験前に 3-4 時間以上の Stanby flow か Prime の 3 回実施	

・(Step 1, 2)Desorb Solution を装置左側の 4 本のインレットチューブ用(25ml)と右側の水インレットチューブ用(15ml)に設置

Desorb and Sanitize	×
Step 1 Place 25 ml BIAdesorb Solution 1 on the left hand tray and insert all four pump inlet tubes. Place 15 ml BIAdesorb Solution 1 on the right hand tray and insert the water inlet tube.	
< <u>B</u> ack Start Close	

・(Step3) 同様に調整した次亜塩素酸ナトリウム溶液(BIA Infectant solution に相当)を装置左側の 4 本のインレットチューブ用(50ml)と右側の水インレットチューブ用(30ml)に設置

- ・(Step4)同様に超純水を両側のインレットチューブに設置
- ・ (Step5) Hepes バッファーか Tris バッファーを A ラインのインレットチューブ、B,C,D ラインは空気中にとり

出しておく

Desorb and Sanitize		
Step 5		
Place tube A in a HEPES or TRIS buffer.		
Recommended concentration 10-50 mmol/l. Let tubes B,C and D hang in the air.		
< <u>B</u> ack <u>Start</u> Close		

5-2. システムチェック

A. 実施頻度等

実施頻度	装置の自己診断。装置の調子が悪いことが疑われるとき。実験が正しく測定できているかを		
	担保するための定期的な実施頻度に設定		
Wizard	Menu bar の Tools — More Tools内 System Check		
Tools			
	Intenance Tools Desorb Desorb Desorb and Sanitize Empty Buffer Tubing Normalize Wash Buffer Tubing t Tools System Check vice Tools Software Problem Report Flow System Wash Superclean		
This proced Total run tir Do not run NOTE: Use other senso	ure removes adsorbed material from the flow system. ne is about 20 minutes. this procedure below 20°C. the Maintenance Chip for this procedure. The surface on r chips may be damaged by the solutions used.		
Last run tim	e: 5/20/2008 9:25 AM		
Help	Start Cancel		

B.準備する試薬、消耗品・注意点

Desorb : (D)	必要試薬·消耗品
Desorb and Sanitize (D&S)	
BIAtest solution	Biacore Maintenance Kit, type 2 内
HBS-N Buffer	150 ml 程度(メンテナンスキットの 10X Buffer を希釈)
Series S Sensor Chip CM5	新品(実行後、実験に使用可能)
超純水	

<u>C-1. System Check の手順</u>

手順	前明	
チップのドック	新品のセンサーチップ CM5、HBS-N をランニングバッファーとし Prime	
温度設定	25℃に設定	
ウイザードの実行	・システムチェック項目の選択(Optional と表示されている項目で日常使用	
	しない機能であれば実施する必要なし)	
結果の確認	・正常範囲内:PASS 範囲外:FAIL	
	FAIL の表示が出たときには弊社サポートまでご連絡ください。	

System Check		
Select test(s) to run.		
This procedure should be run at 25°C with a new Sensor Chip CM5 and with HBS-N as running buffer. Choose Close if you need to change the sensor chip, reset the temperature or change running buffer.		
If any injection is delayed, adjustments can be made by the software. The required test is Injections and refractometer.		
Reagent pumps and blank injection Injections and Refractometer Mix Noise Merged and Dual injections (optional) Buffer selector (optional)		
Tests if the peristaltic pump is in order and that a sample injection with buffer from the reagent supply block is all right.		
< <u>B</u> ack <u>N</u> ext > <u>C</u> lose		

5-3. シャットダウン

実験が終了した際には、次のいずれかの方法でシステムを維持できます。スタンバイ状態で放置 7日以内に使用する場合電源を落として終了 7日以上使用しない場合

5-3-1.スタンバイ状態での放置

測定が終了すると、自動的に Standby flow 状態になります。 チューブ A にセットしたランニング緩衝液で、65 ml/ 24 時間の流速を最長 7 日間継続します。ランニング バッファーを涸らさないように注意してください。廃液ボトルの空き容量にも注意してください。 スタンバイ状態であるか否かは、ウインドウ下の Status bar で確認できます。

5-3-2. 電源の落とし方

電源を落とす前には、メンテナンスを実行してください。

Toolbar の Eject アイコン(罪 たは Menu bar の Tools \rightarrow Eject Chip を選択します。		
	\downarrow		
	Biacore T200		
	This will eject the sensor chip		
	Help Eject Chip Cancel		
Eject Chip をクリックします。		-	

Ţ

センサーチップポートが開きます。センサーチップを取り出し、Biacore T200 control software を終了します。 パソコンのシャットダウン、Biacore T200 の本体電源を落とします。

注意) 電源を落とす場合は、システム内部が超純水で置き換わっているかどうか確認の上、電源を落と してください。 5-3-3.センサーチップの保存

取り出したセンサーチップは、以下の2つの方法で保存できます。

リガンドは保存中に変性する可能性があるので、再使用の際にはポジティブコントロールサンプルのレスポンスからリガンドの活性を確認してください。また、再 Dock 時前には、検出面、固定化面に埃などの汚れが付着していないことを確認してください。

ドライ状態での保存

取り出したセンサーチップにパラフィルムを巻いて 4℃で保存します。 安定なサンプルを固定したセンサーチップの保存に用います。

ウェット状態での保存

取り出したセンサーチップのシート部分をカバーから抜き取り、シートだけを容器(50 ml 容のふた付きプラ スチック遠心チューブ等)に分注した HBS-EP+などの緩衝液に浸し、4℃で保存します。

シートの取り出しと保存

センサーチップはカバーとシートから構成されています。

シートの金基板の窪んでいる面はリガンドが固定化されています。平らな面は検出器が接触します。リガン ド固定化面には触れないよう注意してください。

ピンセットにてシートを抜き出し、緩衝液に浸して保存します。

保存していたシートからの緩衝液成分の除去とカバーへの収納

再利用する際は、緩衝液に浸していたシートをカバーに収めます。シートの水分を取り除いてからカバーに 収めてください。

プラスチックの部分および検出面

キムワイプで拭き、超純水で湿らせたキムワイプで再度拭きます。さらに乾いたキムワイプで拭きます。

固定化面

キムワイプなどを"こより状"に細くして、金基板の中央部分に触れないように、四隅から水分を吸収します。

埃に注意しながらカバーに収めます。下図のように、検出面が表になる向きで、ピンセットにてカバーの左 側から挿入します。

*リガンド固定化面を表にして挿入した場合には最後までシートが入りません。

6.知っていると得する TIPS

6-1. アミンカップリング
6-2. アナライトの添加条件設定 40
6-3. 再生条件の設定
6-4. リガンドの Biotin 化
6-5. リファレンスライン
6-6. 溶媒(DMSO)補正(Solvent Correction) 49
6-7. メソッドの構成
6-8. サンプルラックポジションの設定・変更 52
6-9. 特異的結合の確認
6-10. Keyword Table によるサンプル名、濃度などの修正 55
6-11. ウイザードによる Kinetics/Affinity 測定 56
6-12. ウイザードからメソッド変換 58
6-13. フィッティングモデル式と parameters の設定 59
6-13-1. Kinetics 解析
6-13-2. Affinity 解析61
6-14. 解析結果の品質評価
6-14-1. Kinetics 解析63
6-14-2. Affinity 解析65
6-15. 用語集

6-1. アミンカップリング

A. 手順概略

手順	操作項目	参照
1	リガンド希釈液の pH 選択	・中性タンパク質:等電点の pH0.5~2.0 低い
		Acetate
		・塩基性タンパク質:トリス、グリシンなど一級アミンを
		含まない中性緩衝液。
		・酸性タンパク質:アミンカップリング不可→Biotin 化
		(6-4 参照)
		・Capture kit は付属の Acetate
		 ・不明な場合は、Wizard から pH Scouting 実施
		(6-1C 参照)
2	センサーチップの選択	・CM5→アミンカップリングの第一選択
		・C1、CM3、CM4→デキストランへの非特異を減らす。
		固定化する分子が大きい場合(細胞など)。
		・PEG→固定化を極限まで下げて、デキストランへの非
		特異を減らす
		・CM7→CM5 で固定化が足りない場合
3	Wizard テンプレートを用いた固定化	6-1D 参照

<u>B.準備する試薬・サンプル</u>

各センサーチップの Instruction For Use (IFU)を併せてご参照ください

Amine Coupling Kit (BR100050)*

各種リガンド希釈液

一般的に固定化するタンパク質は数十 µg/ml オーダー程度が適当ですが、サンプルや目標とする固定化 量により異なります。

* Amine Coupling Kit の NHS および EDC は超純水に溶解後、凍結保存します。100 µl 程度バイアル に小分けにすることをお勧めします。Biacore 8K/8K+の場合、PCR 8 連チューブが便利です。

<u>C. ソフトの操作のポイント ~ pH Scouting</u>

使用すべきリガンド希釈液が不明な場合、はじめに pH Scouting を行います。

Application Wizards (2-2 参照)→Surface preparation→Immobilization

手順	操作項目	注意点·説明
1	Fc の選択	
2	Buffer name	使用する希釈液名称
3	рН	使用する希釈液の pH
4	リガンド添加時間・流速	通常 60 秒、5μl/分
5	センサーチップ洗浄液	通常 50mM NaOH

7200 lmm	obilization pH Scouting - Setup	×
Detect <u>F</u> low	tion path: 2 v (1)	
-B <u>u</u> ffer	'S	
1	Buffer Name	pH 5.5
2	10 mM Acetate	5
3	10 mM Acetate	4.5
5		
	2	3
<u>H</u> e	lp < <u>B</u> ack <u>N</u> ext >	<u>C</u> lose

下図のようなセンサーグラムが得られます。プレコンセントレーションによるレスポンスが確認できる希釈液の うち最も pH が高いものを採用します。この場合は、10 mM Acetate pH 5.0。

D. ソフトの操作のポイント ~ Amine Coupling

Application Wizards (2-2	! 参照)→Surface preparatio	n→Immobilization
--------------------------	--------------------------	------------------

手順	操作項目	注意点·説明
1	センサーチップの選択	
2	同時固定化 Fc 数	・本マニュアルの用途では通常用いない
3	固定化 Fc の選択	* キャプチャー用分子(抗体など)の場合は、使用する全ての
		Fcを選択。同一条件で固定化。
4	固定化アプローチの選択	固定化量を下げて制御したい場合は Aim・・・を使うこともある
5	固定化メソッドの選択	Amine を選択
6	リガンド添加時間・流速	通常 420 秒、10μl/分

	Immobilization - Immobilization Setu	p	×
	F Chip CM5	→ ← ①	
	Flow cells per 1	· ← ②	
	Flow cell 1		
	Immobilize flow cell <u>1</u>	Method: Amine	
	O Aim for immobilized level	Ligand:] Dilute ligand
	Specify contact time and flow	Contact time: 420 (s) Flow rate: 10	(µl/min)
	O Blank immobilization		
	Flow cell 2		
3 —	► ☑ 들 Immobilize flow cell <u>2</u>	Method: 📷 Amine 🗸 -	← ⑤
	Aim for immobilized level	Ligand: Ligand Name	Dilute ligand
4 -	Specify contact time and flow	Contact time: 420 (s) Flow rate: 10	(µl/min) ◀— 6
	└ ○ Blank immobilization		
	Flow cell 3		
	Immobilize flow cell <u>3</u>	Method: 🔯 Amine 🗸	
	O Aim for immobilized level	Ligand:	Dilute ligand
	Specify contact time and flow	Contact time: 420 (s) Flow rate: 10	(µl/min)
	 Blank immobilization 		
	Flow cell 4		
	Immobilize flow cell 4	Method: Too Amine 🗸	
	O Aim for immobilized level	Ligand:	Dilute ligand
	Specify contact time and flow	Contact time: 420 (s) Flow rate: 10	 _(µl/min)
	 Blank immobilization 		
	Help Quotom Mothede	(Deck N	Close
		VDack III	

E. 固定化量の確認と理論的 Rmax の算出

方法	状況	固定化量の確認法	
1	Wizard を利用	測定結果のウインドウ (Response Bound & Response Final)	
		で確認する。	
2	Manual run を利用	・リファレンスライン F を用いて確認する (6-5 参照)	

補足.固定化量の評価

固定化量として Response Bound と Final の 2 種類が表示される。

レスポンスが小さい方を固定化量として採用する。

固定化量	注意点·説明	
Response Bound	リガンド添加前後のセンサーグラムの高さの差	
Response Final	NHS/EDC 添加前からエタノールアミン添加終了後の差	
Immobilization Results	-	×
Chip: CM5		

Flow cell	Procedure Time and flow	Method Amine	Ligand anti-beta2micro	Response Bound (RU) 11141.4	Response Final (RU) 8957.7
<u>H</u> elp	<u>P</u> rint				

リガンドがアグリゲーションしている場合やセンサーチップ表面に吸着する場合は、エタノールアミンを添加す ることにより、非共有結合でセンサーチップ表面に残ったリガンドは洗い流されるため、Final のレスポンスは Bound より小さくなる。

<u>C</u>lose

また、極めて固定化量が少ない場合は、NHS 化した部分の大半に(一部はリガンドが導入されている) エタノールアミンが導入されるため、Final のレスポンスは Bound より大きくなることがある。 いずれの場合も、レスポンスが小さい方を固定化量として採用する。

理論的 Rmax [RU]= 固定化量[RU]×(アナライトの分子量/リガンドの分子量)×リガンドの結合価数

アナライト添加時に十分なレスポンスが得られるか、実際にアナライトを添加したときのレスポンスが結合部 位特異的かどうかなどを見積もるために利用します。

6-2.アナライトの添加条件設定

アナライトは、通常、Rmax 近くからギリギリレスポンスが得られる範囲で、~3 桁程度の添加濃度レンジ で添加します。濃度 5 点を取る場合、3 倍希釈シリーズ程度です。

A. 添加、解離時間の目

	Kinetics	Affinity
	結合・解離が緩やかなセンサーグラム:	結合・解離が緩やかなセンサーグラム:
添加時間	2-5 min	(結合相で平衡にならない場合)適用不可
小小川山山田	箱型に近いセンサーグラム:	箱型または箱型に近いセンサーグラム:
	1-2 min	1-2 min
	結合・解離が緩やかなセンサーグラム:	
4700/1111日日	\sim 90 min	了一一(ao 孙阳府东迅宁)
	箱型に近いセンサーグラム:	小安(30 秒柱度で設定)
	1∼2 min	
濃度点数	5	8 程度

<u>B. Manual Run による条件検討</u>

Manual run ^と (2-2 参照)を実行します。						
手順	操作項目	注意点·説明				
1	Flow rate	はじめに添加するサンプルの流速を決めます。				
2	Flow path	使用する Flow path の選択。				
3	Start	測定開始				

🔤 Manual Run			X
Flow			Reagent Rack 2
Elow rate: 30	(μl/min) 🔶 1		
Flow path			
Detection in flow cell(s): 3,	4	<u>R</u> eference subtraction:	
O 📑 Flow path 1	O Flow path 1-2	none 💟	
Flow path 2	• Flow path 3-4	4-3 💌	None
O 📕 Flow path 3	O 📑 Flow path 1-2-3-4	none 🔽	
O 📕 Flow path 4			
	Ŷ		
	2		
Help Eject Rack		3 —	<u>Start</u>

ベースラインのセンサーグラムが現れます。

🔚 Biacore T200 Control Softwa	re - [regeneratio	n check.blr]	J								×
E File Edit View Command	s Run Tools	Help								- 8	×
🕒 🖬 🖓 🏬 🗜 🖳 15	/, 등, Cyde:	1 🖌	Curve: - Ser	nsorgram Fc=3			• 建	•			
ℰ≣∣୬୬ 3 0 <u> </u> ⊵ Ջ⊾	RU 40000									Lock sca	Je -
🖌 🚵 New Cycle 30 4-3	35000							_			
	30000										
	25000 -										
	20000										
	15000										
	² 10000 -										
	5000 -										
	0 -										
	-5000 -										
	-10000 +	5	10	15	20	25 Time	30	35	40	45	-1 50 °

	操作項目	注意点·説明
1		通常、リガンドキャプチャには 10µl/min.、アナライト添加には
	▲ 流迷の変更	30µl/min.以上
		リガンドキャプチャにはアクティブセルのみ(Fc2,4 など)、アナライ
		ト添加にはリファレンス-アクティブセル(Fc4-3、2-1 など)
		キャプチャーリエージェント、リガンド、アナライトの添加
	(亦)サンノル淤加	* クリックすると、添加時間に応じた必要液量が確認できます。
		再生溶液の添加
	(育)再生浴液添加	* クリックすると、添加時間に応じた必要液量が確認できます。
		次の操作コマンドを実行するまでの時間を任意で設定
	■ ====================================	サンプルの分注を行う。
	してサイクルの切り替え	検出セルの変更も可能
	▶ 測定の終了	
	■■ 一時停止	
2	センサーグラム	リファレンス、アクティブ、アクティブーリファレンス
3	レポートポイント	サンプル、再生溶液添加後にレポートポイントを得ます。

(例) Biotin CAPture Kit、流速 2 µl/min.、Flow path 4-3 で開始した場合

各センサーチップの Instruction For Use (IFU)を併せてご参照ください Sensor chip CAP は初回 Rehydration、Conditioning が必要です。

- をクリック、任意のバイアルで Biotin CAPture Reagent を5分(2 µl/min)添加する際の必要量を確認。
- ② しました Biotin CAPture Reagent を必要量セット。
- ③ **ダ**をクリック、②でセットしたポジションと液量に間違いがないことを確認し、OK。
- ④ <u>Fc3、Fc4 に 2500~5000 RU 程度の Biotin CAPture Reagent レスポンスが確認できます。</u>
- ⑤ ぎをクリック、流路を Flow path 4 のみにします。
- ⑥ **こ**をクリック、流速を 10 μl/min 程度とします。
- ⑦ をクリック、Biotin 化リガンドを添加する際の必要量を確認(数十 µg/ml、60-120sec.程度 から検討)。
- ⑧ しましん Biotin 化リガンド溶液を必要量セット。
- ⑨ ダクリック、⑧でセットしたポジションと液量に間違いがないことを確認し、OK。
- ⑩ Fc4 に目標の Biotin 化リガンドのレスポンスが出るか確認。
- ① Ecollyon、流路を Flow path 4-3 にします。
- ⑫ 🌾 をクリック、流速を 30 μl/min 以上とします。
- をクリック、アナライトを添加する際の必要量を確認(濃い目の濃度で、60-120sec.程度から 検討)。
- ④ します をクリック、アナライト溶液を必要量セット。
- 15 **をクリック、**④でセットしたポジションと液量に間違いがないことを確認し、OK。
- <u>Fc3</u> に非特異的結合がないこと、Fc4-3 で理論的 Rmax 近くまでレスポンスが出ていることを確認
 (6-6 参照)。

Biotin CAPture Kit では、アクティブセル(Fc4)において下図のようなセンサーグラムが得られます。

6-3. 再生条件の設定

アミンカップリングによる Sensor Chip CM5 などの直接固定、または、Sensor Chip SA を用いた場合、リガ ンドとアナライトを完全に外す再生条件を設定する必要があります。

再生条件として、以下の二点が重要です。

① アナライトが完全に外れてベースラインまで戻ること。

② 同じアナライトをインジェクションした際に同等のレスポンスが得られる(リガンドが失活しない)こと

候補となる再生方法がある場合、マニュアルランにより確認を行います(6-2B参照)。情報がない場 合、Regeneration Scouting を用います。

A. 手順概略

手順	操作項目	参照
(]	リガンド固定化済みのセンサーチップを	・アミンカップリング (6-1 参照)
	用意	・Sensor Chip SA <mark>(4-1 参照)</mark>
3	Wizard テンプレートを用いた	6-3D 参照
	Regeneration Scouting	

B. 準備する試薬・サンプル

Regeneration Scouting Kitの Instruction For Use (IFU)を併せてご参照ください

Regeneration Scouting Kit (BR100556)

リガンド固定化済みのセンサーチップ

アナライト溶液

ランニング緩衝液

C. ソフトの操作のポイント

Run Wizard→Regeneration Scouting

手順	操作項目	注意点·説明
1	Injection Sequence	Fc/ Sensor Chip の選択
2	Setup	通常、未入力のまま
3	Injection Parameter	アナライト名称、通常 60-120 秒、30μl/分
4	Regeneration Parameters	流速、次サイクルへの待機時間など
5	Number of Condition	評価する再生条件の数
6	Number of Cycle for each	通常 5 回程度繰り返し、失活の様子などを評価する。
\bigcirc	Setting	再生溶液名称、コンタクト時間

Regeneratio	Regeneration Scouting - Experimental Parameters X								
Regeneration parameters									
Flow <u>r</u> ate:	Flow <u>r</u> ate: 30 (µ								
Stabili <u>z</u> ation	period: 0 (s	▲ ④							
High viscosit	v solution:								
Thigh viscosit									
Experimental of	design								
Number of co	onditions: 7	✓	;						
Number of cy	cles for each	Contact	times						
Settings									
Condition	Regeneration solution	Contact time (s)							
1	Glycine-HCI pH 3.0	60							
2	Glycine-HCl pH 2.5	60							
3	Glycine-HCl pH 2.0	60							
4	Glycine-HCI pH 1.5	60 > 7							
5	MgCl2 3.0 M	60							
<u>6</u>	NaOH 15 mM	60							
1	NaOH 30 mM	60							
		-							
Help		< Back Next >	Close						
			7						

下図のような Result が得られます。複数回の Injection により、Baseline まで戻り、同じアナライトをイン ジェクションした際に同等のレスポンスが得られる条件を採用します。

6-4. リガンドの Biotin 化

Biotin 化試薬を用いた一例を示します。

A. 手順概略

手順	操作項目	注意点·説明
1	Biotin 化反応	・タンパク質サンプル:HNS-Biotin=1:1.5(モル比)で混和
		・室温 1 時間、または、4℃で o/n
2	遊離 Biotin の除去	ゲルろ過による除去、または、限外濾過膜による濃縮

<u>B.準備する試薬・サンプル</u>

EZ-Link™ NHS-LC-Biotin (21336 *Thermo Fisher, 50 mg)

EZ-Link[™] Sulfo-NHS-LC-Biotin, No-Weigh[™] Format (A39257 * Thermo Fisher Scientific, 10 x 1 mg)

PD SpinTrap G-25 (28918004)

Vivaspin 500-3K (28932218)

HBS-N 10X (BR100670)

C. Biotin 化、遊離 Biotin の除去手順

① Biotin 化反応

10mM NHS-Biotin in DMSO ストック溶液作成 タンパク質サンプル:HNS-Biotin = 1:1.5(モル比)で混和 室温 1 時間、または、4℃オーバーナイトで静置

② 遊離 Biotin の除去

②-1 PD SpinTrap G-25 によるフリービオチンの除去
Sephadex G-25 担体の入ったカラムを Vortex
先端を折って、キャップを切り取った 1.5ml チューブにセット
1 min at 800 × g で保存溶液除去
400 µl HBS-N を添加。1 min at 800 × g で平衡化。5 回繰り返し。
平衡化済みのカラムを、付属の回収用チューブにセット
Biotin 化サンプル 140-180 µl を、2 min at 800 × g で精製
カラムを除いて、付属のキャップを締める。

②-2 Vivaspin 500-3K によるフリービオチンの除去(ビオチン化サンプルの濃縮)
 Biotin 化反応後、500 µl にアップ
 30 min at 12,000 × g で濃縮

残量 100 μl 程度になるように+10 分程度

濃縮済みの溶液をマイクロチューブに回収。もとの液量になるように HBS-N を追加。

*各試薬および精製カラムの Instruction For Use (IFU)を併せてご参照ください

6-5. リファレンスライン

マニュアルによる固定化、特異的反応の確認などを行った場合、リファレンスラインを用いてレスポンスを確認します。

手順	操作項目	注意点·説明
1	Reference Line	をクリックします。
2	ベースラインの選択	レスポンスを確認したいセンサーグラムのベースラインをクリック
3	F9 をタップ	選択されたポジションが 0(RU)となります。
		もう一度 F9 をタップすると絶対値に戻ります。
4	レスポンスの確認	レスポンス(RU)を確認したい箇所へリファレンスラインを移動さ
		せます。③のウインドウに数値が表示されます。

6-6. 溶媒(DMSO)補正(Solvent Correction)

低分子化合物のストック溶液は、多くの場合 DMSO に溶解されているため、アナライト溶液として数%程度 DMSO を含んだ状態で測定することになります。ランニング緩衝液とアナライト溶液中の DMSO 濃度 1%の違いは約 1,200 RU のバルクレスポンスに相当するため、ランニング緩衝液とアナライト溶液中の DMSO 濃度を揃えていただくことが重要です。

それでも、下図のように 5% DMSO を含むランニング緩衝液中に 5.1% DMSO を含むアナライト溶液が流 れると、120 RU 程度のバルクレスポンスが確認できます。また、厳密に見ると、リガンドが固定化されたセ ル(アクティブセル)は、リガンド固定化分センサーチップ近傍へアクセスできる DMSO 量が減るため、溶 媒効果のずれが生まれます。これを補正する機能が、溶媒補正(Solvent Correction)です。

A. 溶媒補正の準備

5 % DMSO 含有サンプルを用いる場合の溶媒補正用 DMSO 溶液の作成方法例を記載します。4.5% ~6%のような 5%を挟んでやや高めの範囲で DMSO 溶液を 4 点~8 点程度セットすることが標準的で す。特に Biacore8K/8K+では流路構造の工夫により検量線がおおむね直線的になるため、標準設定と して 4 点になります。それ以外の機種では、設定する DMSO 濃度の範囲の広さ、検量線の直線性、測 定に求める真度と測定時間やバイアル設置個所のバランス、などの要素を考慮して濃度点数を決定して ください。

すべての DMSO 溶液は用事調製します。

①1.05x PBS-P+を調製します。

210 ml 10x PBS-P+を、超純水で 2000 ml になるように希釈します。

②溶媒補正用 4.5 %、6% DMSO 溶液および 5.0% DMSO ランニング緩衝液を調製します。

Nominal DMSO concentration	4.5% DMSO (~ 10 mL)	6.0% DMSO (~ 10 mL)	5.0% DMSO running buffer (1000 mL)
1.05× PBS-P+	9.5 mL	9.5 mL	950 mL
100% DMSO	0.45 mL	0.60 mL	50 mL

③ストック溶液を下記表の割合で混合して、4.5%~6%の溶媒補正用 DMSO 溶液を調製します。 8 段階の溶媒補正田 DMSO 溶液を調製する場合・

	700	700	700	700	700	700	700	700 (µ	I)
<u>6% DMSO</u>	700	600	500	400	300	200	100		
4.5% DMSO		100	200	300	400	500	600	700	
0 F又旧()/台/木1	пшπυ	150 倍/汉	で詞表する	るう					

4 段階の溶媒補正用 DMSO 溶液を調製する場合(主に Biacore 8K/8K+)

4.5% DMSO		1500	2x1500	3x1500
6% DMSO	3x1500	2x1500	1500	0
	4500	4500	4500	4500 (µI)

測定時に Solvent Correction を用い、解析を実行することで下図のような補正曲線の作成およびリファ レンスセル-アクティブセル間の補正が実行されます。

X 軸:リファレンスセルのレスポンス、Y 軸:リガンド固定化セルーリファレンスセルのレスポンス。Report point range:本測定の各検体が示したバルクレスポンス(リファレンスセル)の範囲、Correction range:補正される最大補正値(RU) ~最小補正値(RU)の範囲

6-7. メソッドの構成

解析が実施可能な測定モードとして、Wizard と Method があります(2-2 参照)。Wizards によるプロ グラム作成は簡便である反面、シングルサイクルカイネティクスが選択、リファレンスの選択、再生溶液の添 加回数などに制約があります。そこで、Wizard では対応できない複雑なプログラムを使用したい場合は、 Method Builder を使用します。

手順	操作項目	注意点・説明			
1	Assay Steps	・測定全体のアウトラインを設定します。			
		・一つもしくは複数の測定ステップを設定します。			
		・それぞれの測定ステップは Startup、Samples、Control Samples など			
		の測定目的別で設定します。			
2	Cycle types	測定ステップ別に詳細なプログラム(温度、流速、試料の添加順序な			
		ど)を設定します。			

メソッドビルダーの重要な設定項目は Assay Steps と Cycle types です。

Assay Steps

Cycle Types

6-8. サンプルラックポジションの設定・変更

Rack Position の確認しながら、バイアル、プレートに必要なサンプルを分注します。ポジションの変更にはいくつ間方法があります。

手順	操作項目	注意点·説明
1	Rack の変更	使用したい Rack の変更ができます。
2	Plate の変更	96、384、96Deep、384Deepから選択できます。
3	ウェル、バイアルの変更	・クリック&ドラッグで任意のポジションへ移動できます。
		・マウスオーバーで、必要量、デッドヴォリューム、ウェル/バイア
		ルのキャパシティーが確認できます。
(4)	Menu→	Rack やプレートを変更した場合、お勧めの配置を示します。
	default Positions	
	Menu→	自動配置のルール、Pooling の設定ができます。
	Automatic Positioning	

gent Rack 2 🔶 🗌 🤇	Position	Volume (µl)	Content	Туре	Sample 1 Conc (µM	Sample 1) MW (Da)
	R1 A1	58	Negative control	Control sample		
-0.000		58	Negative control	Control sample		
~ 0.000	R1 A3	58	Negative control	Control sample		
	R1 A4	58	Negative control	Control sample		
	< R1 A5	58	Negative control	Control sample		
) R1 A6	58	Positive control	Control sample		
╱ ╏ ╘╎╱╏╚╲	R1 A7	58	Positive control	Control sample		
/ell Microplate	2 R1 A8	58	Positive control	Control sample		
	R1 A9	58	Positive control	Control sample		
	R1 A10	58	Positive control	Control sample		
	R1 B1	58	Sample 1	Sample	10	400
\mathbf{D}) R1 B2	58	Sample 1	Sample	10	400
		58	Sample 1	Sample	10	400
\mathbf{O}) R1 B4	58	Sample 1	Sample	10	400
) R1 B5	58	Sample 1	Sample	10	400
	R1 B6	58	Sample 1	Sample	10	400
	R1 B7	58	Sample 1	Sample	10	400
	R1 B8	58	Sample 1	Sample	10	400
	R1 B9	58	Sample 1	Sample	10	400
\bigcirc	R1 B10	58	Sample 1	Sample	10	400
$\bigcirc \bigcirc $) R1 B11	58	Sample 1	Sample	10	400
) R1 B12	58	Sample 1	Sample	10	400
	R1 C1	58	Sample 1	Sample	10	400
ABCDEFGH	R1 C2	58	Sample 1	Sample	10	400
	D1 C2	50	Cample 2	Camala	10	500

手順	操作項目	注意点・説明
1	Rack	Sample(プレート)、Reagent(バイアル)へ配置します。
2	Vial Size	Small (7mm またはウェル) 、Medium (1.5ml,15mm) 、Large
		(15mm)へ配置します。
3	Pooling	Yes/No で Pooling するか選択ができます。Auto では、再生、Start up など
		解析のセンサーグラムに直接関わらない用液のみ Pooling します。
		* Plate での Pooling には Septa によるシールが必要です。
4	Apply、OK	Apply で変更、OK で適用します。

Automatic Positioning で次のウィンドウが表示されます。

Automatic Positioning														2
Change the order in which the samples are positioned by ordering the regions. The first region in the list is positioned first														
Region	Color		Orientat	ion	Anchor		Rack		Vial Si	ize	Pooli	ng	First Sort By	Move Up
Control sample	Cyan 📃	•	Column	-	Bottom left	•	Sample	•	Small	-	Auto	•	Content - Ascending	14 0
Sample	DarkBlue	-	Column	-	Bottom left	-	Sample	-	Small	-	Auto	-	Content - Ascending	Move Down
Startup	Crimson	•	Column	-	Bottom left	-	Sample	-	Small	-	Auto	-	Content - Ascending	
Wash	Yellow	-	Column	-	Bottom left	-	Reagent	-	Large	-	Auto	-	Content - Ascending	
Solvent correction (buffer A)	Blue	•	Column	-	Bottom left	-	Reagent	-	Small	-	Auto	-	Content - Ascending	
							1		2		3			
<													>	
<u>H</u> elp <u>P</u> rint											(4	Apply OK	Cancel

6-9. 特異的結合の確認

測定値の評価、フィッティング解析を行う前に、取得したセンサーグラムが"結合部位特異的"な相互作用 を反映したものであるか確認することが重要です。

A. 差し引き後のセンサーグラムからの確認 (Fc2-1、Fc4-3 など)

以下の様子が確認された場合、非特異的な背結合成分が含まれていると考えられます。

手順	確認項目	注意点·説明			
1	平衡値の確認	平衡値に達しているべきセンサーグラムで、特に高濃度帯の結合			
		平衡値に達しないでダラダラと上昇していないか?			
2	理論的 Rmax の確認	その上昇が理論的 Rmax(これ以上結合しないという飽和点)を超			
		えていないか?			
3	解離相の確認	特に高濃度帯の解離相で最初は速やかに下降するのに、そのあとな			
		かなかベースラインまで落ちない二相性の形状になっていないか?			

B.リファレンスセルに対する非特異的結合の確認

詳細を確認するためには、まず、リファレンスセルのみを確認します。

手順	確認項目	注意点·説明
\bigcirc	Curve Type の選択	Curve Type として Reference と Active 個別のセンサーグラムを選択
		します。
2	Referenceの確認	Reference のセンサーグラムに箱型のバルクレスポンス以外の、非特異
		結合が無いことを確認します。

C. 結合部位特異的な結合であるかの確認

続いて、その結合が結合部位特異的なものであるかという点も重要です。アナライトの濃度を複数点とった時に、実測 Rmax が、理論的 Rmax(4-1E 参照)以下で飽和することを確認します。

6-10. Keyword Table によるサンプル名、濃度などの修正

サンプル濃度および濃度単位、サンプルの名称など入力ミスがあった場合、Evaluation Software から Tools... → Keyword Table...をクリックします。

手順	確認項目	注意点·説明
\bigcirc	Concentration Unit	濃度単位に入力ミスがあった場合、解析実行前に編集します。
2	Table	サンプル濃度、サンプルの名称など入力ミスがあった場合、解析実行
		前に編集します。
3	Edit Chip	固定化済みのリガンド名称を編集します。

6-11. ウイザードによる Kinetics/Affinity 測定

解離が速い化合物(再生が不要)の場合、Sensor Chip NA、Sensor Chip SA などを用いてリガンドを 固定化し(4-1 参照)、Multi-Cycle kinetics を用いるケースも多いです。 解析が実施可能な測定モードとして、Wizard と Method があります(2-2 参照)が、この場合、Wizard を用いることが多いです。

A. 準備する試薬・サンプル

	操作項目	用途、備考
必須	リガンド固定化済みセ	・Sensor Chip NA、Sensor Chip SA (4-1 参照)
	ンサーチップ	・アミンカップリング (6-1 参照)
必須	ランニングバッファー	メソッド作成時の画面から必要量を確認。加えて自動測定後の
		stanby flow での放置時間分として 65ml/24hr
必須	化合物アナライト溶液	
必須	50% DMSO 溶液	キャリーオーバー防止用洗浄溶液
ほぼ必須	溶媒補正用溶液	DMSO を含まないバッファーの場合は不要(6-6 参照)

B. Wizard による測定

		0.		
	-		22	
2	,			c
	•			

Run Wizard→Kinetics/Affinity を選択

手順	操作項目	注意点·説明
1	Injection Sequence	・Fc/ Sensor Chip の選択
		・必要に応じて Regeneration(再生)を選択
		・Carry Over 選択すると流路への残存(次サイクルへの影響)が評
		価できます。
2	Setup	・Start up は Running buffer で 3 回以上
		・DMSO を含む場合 Solvent Correction を 4 回以上(6-6 参照)
3	Injection Parameter	・アナライトのコンタクト/解離時間、流速は通常 30µl/min 以上
	Sample	・低分子化合物の場合、50%DMSO の Extra Wash
4	Injection Parameter Regeneration	必要に応じて設定 (6-3 参照)
5	Samples	・Kinetics:濃度 5 点以上を推奨
		・Affinity:濃度 8 点以上を推奨
		・0 濃度 x2 点、再現性確認のためどこかの濃度をもう 1 回。
6	System Preparation	起動後 Prime 実施済みであれば、Prime before run のチェックを外
		す。
\bigcirc	Rack Position	6-8 参照

Kinetics/Affinity - Injection Parameters		×
Sample Contact time: 120 (s Elow rate: 30 (µ ☑ Extra wash after injection 50% DMSO	Dissociation 600 (s	} 3
Regeneration Solution: Glycine-HCl pH1 5	☐ High ⊻iscosity solution	
Contact time: 30 (s <u>F</u> low rate: 30 (µ	Stabilization period 0 (s	ſ
Help	< Back Next > Close	

	Sample id	MW (Da)	Concentration	Concentration
	oumpre la		nM 🔻	µg/ml ▼
1	cmpd1	300	0	0.000
2	cmpd1	300	0	0.000
3	cmpd1	300	2.4	7.200E-4
4	cmpd1	300	12	0.003600
5	cmpd1	300	60	0.01800
6	cmpd1	300	300	0.09000
7	cmpd1	300	1500	0.4500
8	cmpd1	300	12	0.003600
9				
_				

6-12. ウイザードからメソッド変換

解析が実施可能な測定モードとして、Wizard と Method があります(2-2 参照)。Wizards によるプロ グラム作成は簡便である反面、シングルサイクルカイネティクスが選択、リファレンスの選択、再生溶液の添 加回数などに制約があります。そこで、Wizards では対応できない複雑なプログラムを使用したい場合は、 Method Builder を使用します。

Method Builder に使い慣れない方は、Wizard でベースを作成してから保存したファイルを Method で開き、編集することも可能です。

手順	確認項目	注意点·説明			
1	Show importable wizard template	チェックすると保存済みの Wizard template が選択可能です。			
2	Browse	保存先へアクセス			
3	Wizard templateの選	Type が Wizard t	emplate になってい	Nるものが、 Wi	zard で作成したも
	択	のです。 Open から	編集できます。		
Tam Ope	en/New Method		-		
<u>L</u> ook in:	Methods And Templates			✓ È ^Ĕ	÷
Name	core Methods tin CAP wizards 03030045_exp324 core T100 - MultiCycleKientics - Bio core T100 - MultiCycleKinetics - Bio core T100 - SingleCycleKinetics - B (2) (1) December 20 Show im	Type Kinetics/Affinity Method Builder tti Method Builder iot Method Builder	Modified 2021/08/11 ◀ 2021/03/29 2021/06/30 2021/06/30 2021/06/30	- 3 Gancel	
He	Ip <u>B</u> rowse <u>⊠</u> how im	portable wizard templates	<u>N</u> ew <u>O</u> pen	. Cancel	

高, Run method をクリックします。

フィッティング解析に関しては 4-3D 参照。

6-13. フィッティングモデル式と parameters の設定

6-13-1. Kinetics 解析

A. フィッティングモデル式と parameters の設定方法

<u>み</u> Kinetic Screen から、Setting → Fit Settings…を選択

手順	確認項目	注意点·説明
(]	Model	実際の反応様式に沿ったモデル式を選択(6-13-1B 参照)
2	Parameters	下図は Default 値 <mark>(6-13-1C 参照)</mark>
3	Apply To	Fitting 対象のセンサーグラムの選択

<u>B. Kinetics 解析の反応モデル</u>

K_D値は 1:1 結合の上で成り立つ数値のため、可能な限りアッセイを 1:1 の系にしていただき、 1:1 Binding のモデル式を選択することをお勧めします。

モデル式	説明
1:1 Binding	$A + B \Leftrightarrow AB$
	リガンドとアナライトが1分子同士で結合するもっとも単純な反応モデル。
Bivalent Analyte	$A + B \Leftrightarrow AB$, $AB + B \Leftrightarrow AB2$
	アナライトが2価もしくはホモ2量体の反応モデル。AB複合体形成後、リガン
	ドBが2次的に結合する反応。
Heterogeneous	A1 + B \Leftrightarrow A1B , A2 + B \Leftrightarrow A2B
Analyte	競合反応。リガンド上の 1 種類の結合部位を 2 種類のアナライトが競合す
	る反応。
Heterogeneous Ligand	$A + B1 \Leftrightarrow AB1$, $A + B2 \Leftrightarrow AB2$
	アナライトに対して親和性の異なる2つの結合部位を持つリガンドにアナライト

	が並行して結合する反応モデル。
Two state Reaction	$A + B \Leftrightarrow AB \Leftrightarrow AB^*$
	リガンドとアナライトの 1 分子同士の結合であるが、複合体形成後コンフォメ
	ー ション変化を起こす反応モデル。

<u>C. Parameter Setting の使用方法</u>

各パラメータに対して以下の設定が可能です。

項目	説明
Fit	Fit Global:複数濃度のセンサーグラムで1つの解を求めます。
	Fit Local:各濃度のセンサーグラムでそれぞれ解を求めます。
	Constant:固定值。
Initial Value	・Fitting 解析をはじめる初期値を設定。
	・Constantと併せて固定値を設定。

各パラメータに対する主な変更点。Defaultのまま実施するケースも多いです。

モデル式	説明
Ka	多くの場合、変更はしない。
<i>K</i> _d	解離が遅いもので、真値と明らかに異なる値が出た場合、1e-5 くらいからはじめるこ
	ともある。
Rmax	通常は Fit Global。再生が不十分でサイクルごとに Rmax が変わる際、Fit Local を
	使用するケースがある。
tc	多くの場合、変更はしない。
RI	箱型に近いなどセンサーグラムの形状によっては実際のレスポンスを RI として計算し
	てしまうことがあるため、Constant O にしたほうがいい場合がある。

6-13-2. Affinity 解析

A. フィッティングモデル式と parameters の設定方法

Mail Affinity Screen から、Setting → Fit Settings...を選択

手順	確認項目	注意点·説明					
1	Model 実際の反応様式に沿ったモデル式を選択(6-13-2B参照))		
② Parameters 下図は Default 値 (6-13-2C 参照)			()				
3	③ Apply To Fitting 対象のセンサーグラ						
🔊 Fit Se	ettings	×					
Madalı	Charle Charle Millions	1 Parametera	<u> Paramet</u>	er Settings			×
	Steady State Affinity		Steady State Affinity				
			Name	Fit		Initial value	
			KD	Fit global	-	XMax/10	Default
		I	Rmax	Fit local		YMax	Default
		2	offset	Fit local	-	YMax/5	Default
- <u>A</u> pply T	To ✓ Selected C Action will not apply to acc] <u>C</u> leared] <u>E</u> lagged epted or rejected ser					
				_	-		
<u>H</u> el	p	OK Cancel	Help			OK	Cancel

<u>B. Affinity 解析の反応モデル</u>

通常、Steady State Affinity が選ばれます。Kp 値は 1:1 結合のもとで求められる数値ですので、1:1 の結合様式であるとしてフィッティングの計算がされます。

モデル式	説明
Steady State Affinity	$R_{eq} = \frac{CR_{max}}{K_{D} + C} + offset$
	1:1 Binding モデルで、Rmax は Fitting パラメータ。
Steady State Affinity	Steady State Affinity と同じモデル式で、ポジコンのレスポンスから計算さ
Constant Rmax	れた 100 Da あたりの Rmax を入力して、解析を行う。高濃度側のアナ
	ライト濃度のデータポイントを取得できない場合に使用。

<u>C. Parameter Setting の使用方法</u>

各パラメータに対して以下の設定が可能です。

項目	説明
Fit	Fit Global:複数濃度のセンサーグラムで1つの解を求めます。
	Fit Local:各濃度のセンサーグラムでそれぞれ解を求めます。
	Constant:固定值。
Initial Value	・Fitting 解析をはじめる初期値を設定。
	・Constant と併せて固定値を設定。

各パラメータに対する主な変更点。Defaultのまま実施するケースも多いです。

モデル式	説明
Ka	多くの場合、変更はしない。
Rmax	通常は Fit Global。再生が不十分でサイクルごとに Rmax が変わる際、Fit Local を
	使用するケースがある。
offset	多くの場合、変更はしない。

6-14.解析結果の品質評価

Evaluation Softwareは、フィッティングの品質評価を行う機能があります。十分に注意いただきたい点として、これはあくまでフィッティング計算における品質評価です。まずは見たいものを反映しているセンサーグラム形状になっているか、そのためのアッセイセットアップが何より重要です(6-9 参照)。

6-14-1. Kinetics 解析

	Α.	Quality	Control	タブ
--	----	---------	---------	----

手順	確認項目	注意点・説明
1	速度定数がシステムのスペック範囲	Biacore T200 のスペック範囲
	内か?	$k_a = 1e3 \sim 1e9, k_d = 1e-5 \sim 1$
2	各パラメータが独立して算出されて	k』、k』および Rmaxの間に相関性はない。
	いるか?	マストランスポートリミテーション下で ka、kaに相関性 が見
		られる。
3	溶液効果の値(RI)の妥当性	リファレンスセルおよびアナライトのゼロ濃度を差し引によっ
		て RI は ゼロに近い値となるはず。
4	センサーグラムはカーブを描いている	高濃度サンプルに注目。センサーグラムの結合・解離領
	か?	域が直線的な場合、Fitting 結果の信頼性は低い。
5	フィッティングカーブに対して測定プロ	Residuals タブを確認(6-14-1B 参照)
	ットがランダムに分散しているか?	

Quality Control Report Residuals Parameters		
✓ Kinetic constants are within instrument specifications.		
Kinetic constants appear to be uniquely determined.	←2	
No significant bulk contributions (RI) found.	←3	
Check that sensorgrams have sufficient curvature.	← ④	
Examine the residual plot. Pay attention to systematic and non-random deviations.	← 5	

ステータスマーク

▶ (緑) クオリティーアセスメントにパスしています。

- ┘(黄)クオリティーアセスメントの許容限界に近いです。
- 8

(赤)クオリティーアセスメントにパスしていません。

😌 (青) 測定者が確認します。

<u>B. Residuals タブ</u>

フィッティングカーブをゼロ一直線にした際の各データのばらつき具合を示します。良好なフィッティングでは、 ランダムにプロットが分散しており、ガイドライン内にほぼ全てのプロットが収まっています。残差プロットに偏り が見られる場合、良好なフィッティングであるとは言えません。

Residuals for a good fit

Residuals for a poor fit

<u>C. Report および Parameters タブ</u>

解析結果として以下のパラメータが算出されます。

		単位	説明
	結合速度定数 <i>ka</i>	1/Ms	複合体形成速度。1M の A と B を混合した際に形成 する複合体の数。
	解離速度定数 <i>k</i> _d	1/s	複合体の安定性。 複合体が 1 秒間に解離する割合。 ka = 0.01 s-1= 1% 1 秒当たり複合体が 1%解離する。
	解離定数 K₀	М	アフィニティーは平衡状態においてどれだけの複合体が 形成されているかを表す。
1:1 binding	Rmax	RU	アナライトの最大結合量。
model 式の 変数	溶媒効果 Rl	RU	バルクレスポンスを引いた時に、ゼロからわずかにずれる 誤差値。 *本来は極めて 0 に近い値をとるべき値
	tc 値	RU · M-1s ^{-2/3} m ⁻¹	tc=kt/³√ f マストランスポート(MTL)定数(kt)の 流速非依存性コンポーネント *どれだけ MTL が強くかかっているかと算出しているかの 指標。この値が小さい場合、センサーチップ表面に到達 するアナライトの実際の濃度は低くなっていると計算され ている。

Fitting 解に 対する評価 パラメーター	カイ二乗 Chi ²	RU²	測定データフィッティングカーブ間の差を示す。 良好なフィッティングで は、シグナルノイズの平均平方値 に一致。
	U-value	-	解析値の信頼性。 ≦15 問題なし。 ≧25 算出された 値の信頼性は低い。 * 既存の 1:1 Binding モデル使用時のみ
	標準誤差 SE	-	各パラメータについて SE を算出。 各パラメータの解析結果に対して、10%以下で一般的 には問題ないと判定されることが多い。

6-14-2. Affinity 解析

A. 信頼性の確認

信頼性の高い解析結果を得るためには、アナライトの最高濃度が Ko 値の 2 倍以上で添加されていることが必要です。この基準を満たしていない場合、Ko 値のラインが赤色で表示されます。

<u>B. Report および Parameters タブ</u>

		単位	説明
	解離定数	М	アフィニティーは平衡状態においてどれだけの複合体が形
1.1 hinding model ++ 0	К _р		成されているかを表す。
	Rmax	RU	アナライトの最大結合量。実際にアナライ添加した時、
受奴			結合量が飽和するレスポンス。
	Offset	RU	X = 0 の時の Y 軸の値
Fitting 解に対する	カイ二乗	2	測定データとフィッティングカーブ間の差を示す。良好なフ
評価パラメーター	Chi ²	RU	ィッティングでは、シグナルノイズの平均平方値に一致。

6-15.用語集

2D-kinetics	2D カイネティ	8K/8K+で用いる測定方法の一つ。複数ニードルと複数サイクルで広		
	クス	範囲な濃度で一度に測定する。		
Active Cell	リガンド固定	Flow Cell のうち、リガンドを固定するセル		
	化セル			
Affinity	平衡値解析	各アナライト濃度の結合相における平衡値プロットから 1/2Rmax に		
		相当するアナライト濃度に相当する K₀ 値を算出。結合・解離の速い		
		相互作用を示すセンサーグラムの解析手法。		
Affinity	アフィニティー	分子の 1:1 結合における親和力(K₀値)。		
Amine	アミンカップリ	分子の一級アミンを利用して、センサーチップにリガンドやキャプチャー		
Coupling	ング	分子を直接固定化する一般的な手法。		
Analyte	アナライト	Biacore において送液する側のサンプル。		
Association	結合	アナライトを送液して、センサーチップ上のリガンドとアナライトが結合す		
		ること。		
Avidity	アビディティー	多価分子のおける親和力の総量。		
Bulk Effect	溶液効果	ランニング緩衝液に対して密度の異なる溶液を添加すると、レスポン		
		スが生じる現象。		
Capture	キャプチャー	リガンドを捕捉する分子をセンサーチップに固定化し、間接的にリガン		
		ドをセンサーチップに結合させること。		
Capturing	キャプチャー	センサーチップヘリガンドを間接的に固定化するための捕捉用分子。リ		
molecule	分子	ガンドの再生が可能となる。		
Channel	チャンネル	8K/8K+における、各ニードルに対応する測定番号。		
Chi ²	カイ二乗	測定データフィッティングカーブ間の差(平均平方値)を示す。		
Contact Time	添加時間	リガンド、アナライトなどをインジェクションする時間。		
Desorb	デゾルブ	IFC およびサンプルチューブを洗浄するプログラム。週一回の実施を推		
		一 奨。		
Desorb and	デゾルブアン	すべてのフローシステムの滅菌および洗浄するプログラム。月一回の実		
sanitize	ドサニタイズ	施を推奨。		
Direct	直接法	センサーチップにリガンドを直接固定化する方法。主にアミンカップリン		
Immobilization		「グを指す。		
Dissociation	解離	アナライトの送液を止めて、センサーチップ上のリガンドとアナライトが解		
		離すること。		
Experimental Rmax	実測 Rmax	実際にアナライトを添加した時、結合量が飽和するレスポンス(RU)		
Fit	フィッティング	非線形最小二乗法により変数となる ka、ka、Rmax などを算出する		
	解析	解析方法。		

Fitting Model	反応モデル	フィッティング解析を行う際のモデル式。	
Flow Cell	フローセル	センサーチップ上でマイクロ流路から送液された溶液と接液する箇所。	
(Fc)		反応・検出の場。通常、Active Cell と Reference Cell を持つ。	
Foil	フォイル	Biacore で 96/384 ウェルプレートを用いる際のプレートシール	
		(Pooling 不可)	
Immobilization	固定化	センサーチップにリガンドを結合させる操作。Capture(キャプチャー)	
		との総称として用いることもある。	
Injection	インジェクショ	ニードルを用いたサンプルの添加。	
	ン		
Integrated	マイクロ流路	カートリッジ形式のマイクロ流路系。センサーチップと接する個所にフロ	
Cartridge (IFC)	系	ーセルを形成する。	
ka (Kon)	解離速度定	複合体の安定性。複合体が1秒間に解離する割合(1/s)。	
	数	ka= 0.01 s⁻¹= 1% (1 秒当たり複合体が 1%解離する)。	
KD	解離定数	平衡状態においてどれだけの複合体が形成されているかを表す	
		(M) 。	
kd (koff)	結合速度定	複合体形成速度。1MのAとBを混合した際に形成する複合体の	
	数	数(1/Ms)。	
Kinetics	カイネティクス	反応速度論的解析。センサーグラムの形状を評価し、ka、kaを算出	
	解析	する解析手法。	
Ligand	リガンド	Biacore においてセンサーチップに固定化する側のサンプル。	
Mass	マストランスポ	アナライトの供給が追いつかず、消費速度が上回る現象。センサーグ	
Limitation	ートリミテーシ	ラムの変形が生じるため、固定化量を下げるとともに流速も高流速	
(MTL)	J	(30 μI/min) にする。	
Multi cycle	マルチサイク	各アナライト濃度を個別サイクルで測定する方法。	
kinetics	ル法		
Parallel	パラレルカイ	8K/8K+で用いる測定方法の一つ。複数ニードルで一度に複数濃度	
kinetics	ネティクス	を測定する。	
Pre-	プレコンセント	アミンカップリングにおいて、リガンドの等電点より 0.5~2.0 程度低い	
Concentration	レーション	pH の溶媒を用いることでセンサーチップ近傍へ静電的に濃縮させる	
		効果。	
Quality	クオリティーコ	フィッティング解析終了後に Evaluation Software が示すフィッティング	
Control	ントロール	の品質評価。	
Reference Cell	リファレンスセ	Flow Cell のうち、リガンドを固定化しないセル(溶液効果の補正	
	ル	用)	
Regeneration	再生	センサーチップに固定化されたリガンドからアナライトを強制的に全て解	
		離させる操作。リガンドごと解離させる場合もある。	

Residuals	残差プロット	Evaluation Software が示すフィッティングの品質評価の一つで、フィッ
		ティンクカーフに対する測定データのスレを示す。
Resonance	レゾナンスユ	Biacore の測定によって得られるレスポンスの単位。
	ニット	
RI	溶媒効果	バルクレスポンスを差し引いた時に、ゼロからわずかにずれる誤差値。
Rmax	アールマックス	アナライトの最大結合量。Theoretical Rmax(理論的 Rmax)と
		Experimental Rmax(実測 Rmax)がある。
Sensor Chip	センサーチップ	リガンドを固定化し、分子間相互作用の場となる Biacore 専用の消
		耗品。全 15 種類程度。
Sensorgram	センサーグラ	Biacore から得られる、結合、解離の様子を反映した測定データ。
	Д	
Septa	セプタ	Biacore で 96/384 ウェルプレートを用いる際のゴム製プレートシール
		(Pooling 可)
Serial kinetics	シリアルカイネ	8K/8K+で用いる、Single cycle kineticsとMulti cycle kineticsの総
	ティクス	称。同一のニードルで各濃度をとる。
Similarity	同等性	EC50、PLA などのポテンシーアッセイ、また、Sensorgram
		Comparison による結合様式の類似性評価。
Single cycle	シングルサイ	各アナライト濃度を同一サイクルで測定する方法。
kinetics	クル法	
Solvent	溶媒補正	アナライトに DMSO などのバルクレスポンスが大きな溶媒を含む際に生
Correction		じる、Active CellとReference Cellにおける溶液効果のズレを補正
		すること。
Surface	表面プラズモ	表面への分子の結合・解離を金膜表面近傍の屈折率変化として非
Plasmon	ン共鳴法	標識かつリアルタイムで追跡できる方法。
(SPR)		
System Check	システムチェッ	
	ク 	
tc 值	ティーシー値	どれだけ MTL が強くかかっていると算出しているかの指標。この値が小
		さい場合、センサーチップ表面に到達するアナライトの実際の濃度は
		低くなっていると計算されている。
Theoretical	etical 理 論 的 Rmax	固定化したリガンド分子にアナライトが全て結合した時に得られる理
Rmax		論上最大のレスポンス(RU)
Thermodynami	熱力学的解	Δh エンタルピー、Δs エントロピーといった熱力学的パラメーターに基づ
CS	析	いて、分子間の結合様式情報を得る解析方法。
U-Value	ユーバリュー	マストランスポートリミテーションを反映する解析値の信頼性。≦15 問
		題なし。≧25 算出された値の信頼性は低い。* 1:1 Binding モデル
		使用時のみ

■総合お問合せ窓口

TEL: 03-5331-9336

● 機器アフターサービス

(営業日の 9:00~17:30、音声案内に従い①を選択) FAX:03-5331-9324(常時受付)

● 製品技術情報に関して

(バイオダイレクトライン、営業日の 9:00~12:00、13:00~17:30) 音声案内に従い②を選択後、対象の製品別の番号を押してください。

- ●: ÄKTA、クロマトグラフィー関連製品
- ❷:ビアコア関連製品
- 3: 電気泳動関連製品、画像解析装置
- ④: IN Cell Analyzer、ワットマン製品、その他製品
- e-mail:Tech-JP@cytiva.com(常時受付)

● 納期/在庫お問合せ

(営業日の 9:00~12:00、13:00~17:30、音声案内に従い③を選択)

注)お問合せに際してお客さまよりいただいた情報は、お客さまへの回答、弊社サービスの向上、弊社からのご 連絡のために利用させていただく場合があります。

注)アナログ回線等で番号選択ができない場合はそのままお待ちください。オペレーターにつながります。

www.cytivalifesciences.co.jp

論文に掲載いただく際の名称・所在地 Cytiva / Tokyo, Japan

グローバルライフサイエンステクノロジーズジャパン株式会社 〒169-0073 東京都新宿区百人町 3-25-1 サンケンビルヂング お問合せ:バイオダイレクトライン TEL:03-5331-9336 e-mail:Tech-JP@cytiva.com 掲載されている内容は2021年8月現在のもので予 告なく変更される場合がありますのであらかじめご了 承ください。掲載されている社名や製品名は、各社の 商標または登録商標です。お問い合わせに際してお 客さまよりいただいた情報は、お客さまへの回答、弊 社サービスの向上、弊社からのご連絡のために利用さ せていただく場合があります。