1. Ghaemmaghami, S. et al., Global analysis of protein expression in yeast. Nature 425, 737-741 (2003).
  2. Eriksson, J. and Fenyö, D. Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs. Nat. Biotechnol 25, 651-655 (2007).
  3. Ali-Khan, N. et al. Overview of proteome analysis, in Current Protocols in Protein Science, John Wiley and Sons, Inc., New York. 22.1.1-22.1.19, supplement 30 (2002).
  4. Anderson, N. L. and Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics 1, 845-867 (2002).
  5. Bodzon-Kulakowska, A. et al. Methods for samples preparation in proteomic research. J. Chromatogr. 849, 1-31 (2007).
  6. Rifai, N. et al. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol. 24, 971-983 (2006).
  7. Svensson, M. et al. Heat stabilization of the tissue proteome: a new technology for improved proteomics. J. Proteome Res. 8, 974-981 (2009).
  8. Bodzon-Kulakowska, A., et al., Methods for samples preparation in proteomic research, J. Chromatogr. B, 849, 1-31 (2007).
  9. Granger, J. et al. Albumin depletion of human plasma also removes low abundance proteins including the cytokines. Proteomics 5, 4713-4718 (2005).
  10. Liu, T. et al. Evaluation of multiprotein immunoaffi nity subtraction for plasma proteomics and candidate biomarker discovery using mass spectrometry. Mol. Cell. Proteomics 5, 2167-2174 (2006).
  11. Hunter, T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353, 583-605 (1998).
  12. Ogorzalek Loo, R. R. et al Surfactant effects on protein structure examined by electrospray ionization mass spectrometry. Protein Science 3, 1975-1983 (1994).
  13. Cohen, S. L. and Chait, B. T. Infl uence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal. Chem. 68,31-37 (1996).
  14. Jiménez, C.R. et al., Sample Preparation for MALDI Mass Analysis of Peptides and Proteins, Curr. Protoc. Protein Sci., Unit 16.3, 10.1002/0471140864.ps1603s14 [Online] 1 May 2001.
  15. Berkelman, T. Removal of interfering substances in samples prepared for two-dimensional (2-D) electrophoresis. Methods in Molecular Biology 424 Humana Press, New Jersey, pp 51-62 (2008).
  16. Görg, A. et al. Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 3665-3685 (2004).
  17. 2-D Electrophoresis: Principles and Methods, Cytiva, 80-6429-60 Edition AD (2010).
  18. Wysocki V. H. et al. Mass spectrometry of peptides and proteins. Methods 35 211-222 (2005).
  19. Domon, B. and Aebersold, R. Mass spectrometry and protein analysis. Science 312, 212-217 (2006).
  20. Pan, S. et al. Mass spectrometry based targeted protein quantifi cation: methods and applications. J. Proteome Res. 8, 787-797 (2009).
  21. Brun, V. et al. Isotope dilution strategies for absolute quantitative proteomics. J. Proteomics 72, 740-749 (2009).
  22. Picotti, P. et al. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138, 795-806 (2009).
  23. Kurien, B. T. et al. Protein blotting: a review. J. Immunol. Methods 274, 1-15 (2003).
  24. Application note: Multiplex protein detection using the ECL Plex™ fluorescent Western blotting system, Cytiva, Edition 28-4015-40 AB (2005).
  25. Fredriksson, S. et al. Multiplexed protein detection by proximity ligation for cancer biomarker validation. Nat. Methods 4, 327-329 (2007).
  26. Joos, T. O. et al. Protein microarray technologies: an array of applications, in Optical Biosensors: Today and Tomorrow 2nd Edition (Ligler, F. S. and Taitt, C. R. eds.), Elsevier, Oxford (2008).




※日本ポールの他事業部取扱い製品(例: 食品・飲料、半導体、化学/石油/ガス )はこちらより各事業部へお問い合わせください。